诱导小鼠快感缺失的不可预测慢性轻度应力协议

Behavior

Your institution must subscribe to JoVE's Behavior section to access this content.

Fill out the form below to receive a free trial or learn more about access:

 

Summary

本文介绍了小鼠不可预测的慢性轻度应力协议。该协议诱发长期抑郁样表型, 并能评估假定抗抑郁药在逆转行为和 neuromolecular 抑郁症状的缺陷的功效。

Cite this Article

Copy Citation | Download Citations | Reprints and Permissions

Burstein, O., Doron, R. The Unpredictable Chronic Mild Stress Protocol for Inducing Anhedonia in Mice. J. Vis. Exp. (140), e58184, doi:10.3791/58184 (2018).

Please note that all translations are automatically generated.

Click here for the english version. For other languages click here.

Abstract

抑郁症是一种非常普遍和衰弱的情况, 只有部分通过当前的对比解决。许多患者对治疗缺乏反应, 提示需要开发新的治疗替代品, 并更好地了解紊乱的病因。具有转化优点的临床前模型对于这项任务是基本的。在这里, 我们提出了在小鼠不可预测的慢性轻度应激 (UCMS) 方法的协议。在本议定书中, 青春期小鼠长期暴露于互换不可预知的轻度压力源。类似于人的抑郁症的发病机制, 在小鼠青春期的敏感期内的压力暴露在成年时煽动一种抑郁症状的表型。UCMS 可用于抗抑郁剂的各种抑郁症状的行为和 neuromolecular 指数的筛查。在评估啮齿动物的抑郁症状行为的更突出的测试中, 蔗糖偏好测试 (SPT), 反映快感缺失 (抑郁症的核心症状)。本议定书还将介绍 SPT。UCMS 诱导快感缺失的能力, 引发长期行为缺陷, 并通过慢性 (但不是急性) 治疗与抗抑郁药, 使这些赤字的逆转加强了协议的有效性相比, 其他动物协议诱发抑郁症状的行为。

Introduction

主要抑郁障碍 (MDD) 是一种衰弱的情况, 已被表明为11的原因全球负担从疾病1, 与终身流行的 11–16%2,3。MDD 已与严重损害患者的社会和职业功能, 降低生活质量, 许多精神和身体紊乱和增加的死亡率风险4,5,6,7. 对 MDD 有几种有效的对比和心理干预措施;然而, 超过第三的患者没有达到缓解与现有治疗选项8,9,10,11。因此, 更好地绘制 MDD 的病理生理学和新药的开发仍然是至关重要的。为了解决这些任务科学验证动物模型需要使用。

不可预测的慢性轻度应激 (UCMS) 是一种著名的啮齿类动物范式, 用于诱发抑郁和焦虑的行为12131415。UCMS 的主要目的是在小鼠和大鼠身上产生行为缺陷 (如快感缺失和行为绝望12,15), 并促进潜在治疗药理剂的筛查。该程序是第一次引入的16和随后开发的威尔纳17,18, 产生巨大的行为和神经生物学结果追忆抑郁症症状12。它最初是为老鼠设计的, 后来被安置到老鼠13,19。在这个过程中, 青春期动物长期暴露在不同的不可预测的轻度压力源。随后, 对药理剂进行管理。在治疗终止时获得行为和生物指数。在 UCMS 之后进行的比较突出的测试之一是蔗糖偏好测试 (SPT)。SPT 是基于啮齿类动物天生偏爱的甜溶液而不是水, 被广泛认可为评估快感缺失121820的基本转化模型, 21 (这是人类抑郁症22,23) 的核心症状。

在进入第四十年以来, UCMS 在无数研究中被应用于老鼠和老鼠身上。大多数这些研究采用 UCMS 作为一种方法, 以诱发抑郁症状的行为12,13,21,24。研究还使用了模型来生成 anxiogenic 效果2526272829。蔗糖和糖精首选项是用于评估快感缺失以下 UCMS121830313233的主要测试。UCMS 文献中高度纳入的其他显著成果措施有: 尾悬架试验 (TST)283435、强制游泳试验 ()2834,36,37 (测量压力应对/行为绝望), 野外测试 (经常测量探索行为, 焦虑样行为和运动活动)25,28,38, 升高加上迷宫 (EPM; 测量焦虑样行为)253940和其他测试, 测量抑郁症状行为、焦虑样行为、认知功能和社会行为12.三环抗抑郁药的慢性施用 (TCAs; 丙咪嗪35,41,42,43, 地昔帕明18,44,45), 四环抗抑郁药 (TeCAs; 马普替林46,47, 米安色林48), 选择性血清素再摄取抑制剂 (SSRIs; 氟西汀46,47,49, 依他普仑30,50, 帕罗西汀51,52), 褪黑激素43,49, 阿戈美拉汀53, 脂肪酸酰胺水解酶 (FAAH) 抑制剂URB59754和几种天然化合物30375055565758已表现为逆转 UCMS 引起的抑郁和焦虑样症状。总的来说, 这些治疗效果尚未获得通过急性治疗12 (例如, 帕罗西汀51,52, 丙咪嗪53,54,59 ,60, 氟西汀53, 阿戈美拉汀53, URB59754, brofaromine60)。

儿童期和青春期的压力暴露是在成年616263期间的前形成 MDD (其中几个其他精神疾病) 的一个主要危险因素。下丘脑-垂体-肾上腺 (HPA) 轴是一个主要的神经内分泌系统, 调节对压力64的生物行为反应。童年和青春期敏感神经发育期间的长期压力会损害 HPA 轴的平衡。它可能引发一种增强的交感神经活化、不平衡反应性和 hypercortisolemia 通过静止状态持续的状态;因此, 使个人易受抑郁症或焦虑相关的探讨65,66,67,68。UCMS 充分地转化了这种发病机制: 在小鼠青春期时的压力应用诱发了长期的抑郁症状易感性。此外, UCMS 引起的行为缺陷, 亦即在 HPA 轴功能的显著改变 (例如, 通过导致海马脑源性神经营养因子的减少 [BDNF; 蛋白质高度参与平衡HPA 轴69,70]30, 或通过损害皮质酮分泌到血液71,72), 在相似的病理生理学在人类12, 50,73

UCMS 有几个增强功能作为抑郁症的模型:例如(i) 快感缺失的启发 (这被认为是 endophenotype 的 MDD23,74);(ii) UCMS 能够评估各种抑郁症状行为, 如行为绝望、减少的社会行为、毛皮状态恶化等34;和 (iii) 慢性 (2-4 周), 但不是急性, 抗抑郁药后压力暴露可能产生一个长期的治疗效果平行于人类患者获得的效果相同的代理30,75 ,76,77

与其他抑郁症动物模型相比, 这些特征增强了 UCMS 的有效性。78和 TST79是两种模型, 用于诱导或评估抑郁症状的行为。作为诱导抑郁症状行为的模型, 与 UCMS 相比, 它们有明显的不足;它们不会引起长期的行为改变, 可能只是反映对急性压力的调整, 而不是产生持久的抑郁症状表现76

抑郁症的另类动物模型是社会失败模型。与 UCMS 和尖沙咀不同的是, 这种模式 (如: 厌恶) 需要应用慢性应激 (id est [], 动物的经常性服从与占主导地位的对应的社会邂逅)76,77,80,81,82. 社会失败模式的主要优点是, 它将社会刺激作为压力源, 从而反映社会心理压力在人类抑郁症发病机制中的作用。与 UCMS 类似, 社会失败模型引起长期的抑郁样行为和神经内分泌改变。然而, 再次平行于 UCMS, 社会失败导致的赤字可以通过慢性, 但不是尖锐的抗抑郁药逆转。总的来说, 有大量支持 UCMS 和社会失败作为临床前仪器的研究抑郁症病理生理学76,77,81,82.然而, 社会失败模式的一个主要缺陷是, 它只能应用于雄性啮齿动物, 因为雌性没有表现出足够的侵略性行为对彼此83。相比之下, UCMS 已被证明产生几个抑郁症状的影响, 男性和女性的老鼠34

可预测的慢性轻度应激 (PCMS) 是另一种啮齿类动物模型, 它强制实施每日反复接触约束应力2884858687的方案。一些研究表明, PCMS 增加了焦虑样行为28,87;虽然, 有矛盾的报告对 PCMS 的能力诱导长期抑郁症状的行为。与 UCMS 不同的是, PCMS 产生了不太满意的结果, 这是因为它能够诱导类似无休止状态288486。这与人类现象学是一致的, 在这种现象中, 不可预知的压力比可预测的88更有害。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

这里描述的所有方法都已通过学院动物护理和 Yaffo 的学术院校的使用委员会批准。

1. 动物

  1. 使用青春期前 (3 周大) 癌症研究研究所 (ICR) 炎症雄性小鼠。
  2. 随机化小鼠到两个同样大小的应力组 (UCMS vs. 天真)。每治疗组使用15只小鼠 (例如: 如果有3药理治疗组整体使用90只小鼠; 2 [UCMS vs. 天真] x 3 [治疗] x 15 [小鼠] = 90)
  3. 根据应力组的小鼠;也就是说, 只用天真小鼠的房子幼稚的小鼠, 和房子 UCMS 组小鼠只从 UCMS 组小鼠。
  4. 家庭动物在标准家笼 (30 x 15 x 14 厘米; 5 只小鼠每笼; 每个笼子包含所有治疗组的小鼠 [药理治疗组]; 在整个实验过程中, 保持同一个笼中的小鼠, 除非另有说明).
  5. 用新鲜的木屑填充家笼 (每周更换两次), 并添加一块棉羊毛进行浓缩。
  6. 家中的动物在笼中的驯化期为一周。允许ad 随意访问啮齿动物和水 (除了在 UCMS 压力源应用期间)。
  7. 保持一致的12小时光/暗循环 (除非另有说明)。在 UCMS 过程中保持幼稚的老鼠在他们的家庭笼子里。

2. UCMS

  1. 在实验室中指定一个单独的房间, 仅用于 UCMS 协议。
  2. 设计一个4周的压力源方案, 其中每一个七压力 (湿笼, 减振木屑, 倾斜笼, 空笼, 社会压力, 小鼠约束和干扰光/黑暗循环) 每周使用一次, 在不同的一天每周 (为可能的设计参见补充表 1)
  3. 经过1周的驯化 (见 1.6) 启动压力源应用 (确保老鼠大约4周大)。
  4. 每天, 在压力源应用之前, 将 UCMS 组的保持架从住房室转移到 UCMS 室。
  5. 在压力源应用中, 阻断 UCMS 组对啮齿动物和水的访问 (除光/暗循环逆转期间除外)。
    注意: 这可以通过更换原来的笼盖 (包含食物和水), 到一个空的笼盖。
  6. 根据先前设计的方案应用以下压力源 (见 2.2):
    1. 湿笼
      1. 把老鼠和他们的家用笼子在一个空笼子里 (没有木屑的笼子) 放在一起。
      2. 用保持在24±1摄氏度的水填满空笼, 深度为1厘米 (小心倒入, 以免老鼠直接溅水)。把老鼠放在湿笼子里4小时。
      3. 将每只鼠标转移到一个单独的单独的瞬态干燥保持架上, 上面有一个热灯, 一个加热垫和纸巾床上用品。将温度计放置在瞬态保持架中, 以验证温度不超过37摄氏度。
      4. 将每只鼠标放在瞬态笼中, 直到干燥并看起来精力充沛 (大约10–15分钟)。将老鼠送回家庭笼中。
    2. 减震木屑
      1. 将水保持在24±1摄氏度到主笼中, 直到木屑适度地被浸湿 (小心倒入, 以免老鼠直接溅水)。
        注: 在浇水前不需要使用新鲜的木屑。
      2. 4小时后, 2.6.1.3 中描述的瞬态笼中的干鼠。将小鼠与家笼对应物放在无菌笼中, 并配有新鲜木屑。
    3. 倾斜保持架
      1. 倾斜保持架在45°对墙4小时。
        注: 在此期间, 压力源小鼠留在他们的家庭笼与他们的对应。
    4. 空笼
      1. 将小鼠, 连同其特定的家庭笼, 从家庭笼到空笼4小时。
    5. 社会压力
      1. 将小鼠和其特定的家庭笼对应物, 从家庭笼转到在压力源应用前至少 3 d 的一组不同小鼠居住的笼子中。把老鼠关在不熟悉的笼子里4小时。
        注意: 为避免不确定, 请在每个笼上贴上标签, 以指示小鼠原笼。
    6. 小鼠约束
      1. 将每只鼠标分别放在干净的鼠标抑制剂中, 4 小时. 返回小鼠回到家庭笼中。
    7. 光/暗循环的中断
      1. 将小鼠, 在他们的家笼与他们的具体对应, 到 UCMS 室。保持灯亮, 连续24小时。
        注意: 只有在这个压力源小鼠将被允许ad 随意访问啮齿动物和水。
  7. 在压力源应用后, UCMS 组从 UCMS 室返回到住房室。
  8. 在4周的压力照射下, 将天真的群体放在住房室里的家笼里。
    注意: 天真的老鼠不会被转移到 UCMS 的房间, 因为暴露在其他小鼠的压力过程中可能会诱发 stressogenic 效应, 即使没有直接接触到压力源89,90
  9. UCMS 期间动物的监测
    1. 在压力源应用期间 (除光/暗循环中断期间), 有经验的实验者每30分钟监测小鼠。如果观察到非典型的窘迫 (颤抖、嗜睡、缺乏运动) (在 "湿笼" 和 "减木屑" 期间, 应特别小心将鼠标从压力源中释放出来)。
    2. 每天检查每只鼠标是否有伤口或其他身体或行为异常。如果检测到此类检查, 请咨询实验室的兽医, 以确定是否应将鼠标排除在实验中。
    3. 每3天称量每只鼠标。必须向实验室的兽医报告体重 (> 从基线重量减少10% 或 > 从最后测量重量减少 15%) 的强健性, 必须将鼠标从实验中排除。

3. 抗抑郁药的筛选

  1. 在 UCMS 协议终止后的一天, 开始管理假定的治疗药理制剂 (, 依他普仑 [15 毫克/千克; ip; 3 周; 每日管理]3050或新草药治疗 [NHT; 30 毫克/千克; ip; 3 周; 一个管理每天]30,50)。
    注: 对于本协议中未包括的其他药物剂量, 请参阅: flouxetine46、47、49、89、90、帕罗西汀51、丙咪嗪35414243、地昔帕明184445、马普替林4647、米安色林48、褪黑素4349, URB59754 和其他天然化合物3755565758
    注意: NHT 是在我们的实验室开发的草药配方。它由4个成分组成:
    山楂裙带菜, 小麦小麦, 百合布朗尼, 酸枣枣。该配方是通过将成分 (作为冻干颗粒) 一起溶解在含有 1% DMSO 的盐水中进行制备, 最终浓度为0.47 毫克/毫升 (每个)2750
  2. 包括控制治疗组和管理生理盐水 (ip; 3 周; 每天一次注射) 到此组。
  3. 根据小鼠体重计算药物剂量, 如前称重。
  4. 长期管理药物 (通常一个药物管理每天通过腹腔注射 [ip] 3 周)。
    注意: 在进行 ip 注射之前, 没有必要麻醉老鼠。
  5. 每 3 d 继续称量老鼠;最后一次称量应在最后一个药物管理之前 3 d。

4. 对 SPT 中的享乐语气的评估

  1. 在处理阶段后, 从主笼中取出每只鼠标, 并将其单独放置在充满新鲜木屑的笼子里, 并将一条棉羊毛浓缩。
  2. 准备两个瓶子, 一个用蒸馏水, 另一个用2% 蔗糖溶液 (其他物质可以使用:例如, 糖精91, 乙醇30)。
    注: 每个瓶子应包含相同体积的液体。在引入流体之前, 既不需要以前的驯化, 也没有习惯阶段。
  3. 称量两个瓶子, 并将它们放在笼盖上, 以允许鼠标广告随意访问两个解决方案的一段时间 (以下之一): 24/48/72/144 小时。
  4. 将两个瓶子放在笼盖的两端。在两个瓶子之间放置啮齿动物, 让广告随意获得食物。
  5. 每隔24小时更换瓶子, 使用新鲜液体的无菌瓶子。
    注意: 当小鼠单独居住时, 即使在144小时92后也无需更换木屑。
  6. 开关喷嘴的位置每12小时 (当测试持续时间为24小时) 或每天一次 (当测试持续时间超过 24 h), 以平衡结果被混淆的可能性的位置偏好。
  7. 每天称量瓶子, 估计每个瓶子的消耗量。
  8. 将蔗糖偏好计算为从总流体摄入量 (蔗糖/蔗糖 + 水) 中高宽比的蔗糖摄入量。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

为了证实 UCMS 程序对诱发抑郁症状缺陷的疗效, 进行了操作性检查。雄性 ICR 炎症小鼠随机分配到 UCMS 或天真条件 (4 周, 如协议2.2 所述)。随后, 该 SPT (6 天, 如《议定书》4所述) 被管理, 以评估在经历 UCMS 后老鼠是否有明显的享乐缺陷。不久后, 小鼠被牺牲, 海马被完全解剖出来的 BDNF (一个蛋白质高度牵连的病理生理学70,93) 通过酶联免疫吸附试验 (ELISA) 评估。有关研究设计, 请参见图 1

独立样品t检验显示了各组在蔗糖偏好 (t(23) = 2.32、 p < 0.05) 之间的显著差异。与幼稚组相比, UCMS 组表现出蔗糖偏好下降 (见图 2A)。这表明, UCMS 协议是有效的诱导快感缺失。独立样品海马 BDNF 水平t检验显示组之间有显著差异 (t(23) = 2.43, p < 0.05)。与幼稚组相比, UCMS 组表现出海马 BDNF 水平减弱 (见图 2B)。这表明, UCMS 协议导致海马 BDNF 水平的减少, 在人类抑郁症94明显。

在我们实验室的另一项研究中, 我们检查了 UCMS 协议后两种药物的潜在抗抑郁作用。30遵循 UCMS 程序 (如2所述) 雄性 ICR 炎症小鼠接受慢性 (3 周) 治疗与 SSRI 依他普仑 (15 毫克/千克; ip), NHT (30 毫克/千克; ip; 有关 NHT 的更多信息, 请参见参考资料25 305075) 或生理盐水。在治疗阶段, 进行了 SPT 和海马 BDNF 水平的评估。有关研究设计, 请参见图 3

对蔗糖偏好的方差 (方差分析) 进行了两种定量分析 (f(292) = 4.01、 p < 0.05) 和 UCMS x 治疗相互作用 (f(292) = 4.92、 p < 0.01) 效果 (参见图 4A)。Sidak 后分析发现, UCMS 盐组与单纯生理盐水组相比, 蔗糖的偏好显著降低 (p < 0.001);与幼稚组相比, UCMS-依他普仑和 UCMS-NHT 组观察不到减少 (不显著 [生理盐水])。此外, 与 UCMS-依他普仑 (p < 0.05) 和 UCMS-NHT (p < 0.001) 组相比, UCMS 盐组显示蔗糖的偏好降低。这些建议依他普仑和 NHT 均归一化 UCMS 诱导的快感缺失。

海马 BDNF 水平的双向方差分析显示显著的 UCMS (f(122) = 8.92, p < 0.01), 治疗 (f(222) = 18.36, p < 0.001) 和 UCMS x 治疗相互作用 (f(222)= 5.19, p < 0.05) 效果 (见图 4B)。Sidak 后分析显示, UCMS 盐组与单纯生理盐水组相比, 海马 BDNF 水平明显下降 (p < 0.001);与幼稚组相比, UCMS-依他普仑和 UCMS-NHT 组没有观察到类似的下降 (生理盐水)。此外, 与 UCMS-依他普仑和 UCMS-NHT 组相比, UCMS-生理盐水组显示海马 BDNF 水平下降 (p < 0.001 在两种对比)。这些建议依他普仑和 NHT 正常化 UCMS 诱发的海马内 BDNF 水平的降低。

Figure 1
图 1: 描述可能的实验设计的示意图.经过1周的驯化, 老鼠被随机分配到 UCMS 或天真的条件 (持续4周)。随后对蔗糖的优选进行了研究, 并对其进行了 BDNF 评价。SPT: 蔗糖优选试验;CD: 颈椎脱位。请点击这里查看这个数字的更大版本.

Figure 2
图 2: UCMS 对蔗糖偏好和海马 BDNF 水平的影响.(A) UCMS 4 周的小鼠与幼稚小鼠相比, 蔗糖的偏爱显著降低。(B) UCMS 4 周的小鼠与幼稚小鼠相比, 海马 BDNF 水平显著降低。n = 每组12–13小鼠。结果表示为平均± SEM. *p < 0.05请单击此处查看此图的较大版本.

Figure 3
图 3: 描述可能的实验设计的示意图.经过1周的驯化, 老鼠被随机分配到 UCMS 或天真的条件 (持续4周)。随后, 小鼠接受了生理盐水、依他普仑 (15 毫克/千克; ip) 或 NHT (30 毫克/千克; ip) 的慢性治疗, 持续3周 (每天一次)。经过治疗, 研究了蔗糖的偏好, 并对其进行了 BDNF 评价。SPT: 蔗糖优选试验;CD: 颈椎脱位。请点击这里查看这个数字的更大版本.

Figure 4
图 4: 慢性治疗与依他普仑和 NHT 对 UCMS 诱导的蔗糖偏好和海马 BDNF 水平的降低的影响.(A) 依他普仑和 NHT 都阻止了 UCMS 引起蔗糖偏爱的减少;n = 每组15–17小鼠。(B) 依他普仑和 NHT 都阻止了 UCMS 诱发海马 BDNF 水平的降低;n = 每组4–6小鼠。结果表示为平均± SEM. *p < 0.05 ***p < 0.001。这个数字已经从我们的实验室以前发表的研究修改, 并转载在公共科学图书馆一个开放访问许可证 ("CC"), 允许重印30请点击这里查看这个数字的更大版本.

补充表 1:不可预测的慢性轻度应力 (UCMS) 的时间表.请点击这里下载此文件.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

在 MDD 是一个普遍的高度衰弱的紊乱, 只有部分解决目前的治疗选择, 科学追求更好的治疗仍然是一个紧迫的问题。随着心理技术的创新, 对现有药物的大部分患者需要额外的对比。细致的抑郁症动物模型是这项工作的关键因素。这种模式有助于筛选创新抗抑郁药, 并扩大对疾病病因学的理解。UCMS 是一种较突出的啮齿动物模型的抑郁症。其 "身材" 展示了大量的出版物和引人注目的见解12,18,82,95,96,97

快感缺失是 MDD222374的核心症状之一。更严重的无休止音与 MDD 患者的预后较差有关74,98。UCMS 作为抑郁症模型的一个主要力量是它能够生成快感缺失31 , 如 SPT 所示. 蔗糖是各种啮齿类动物的先天增强剂,51,52,59, 99;这就解释了 SPT 作为啮齿动物1431100中的一种逼真的享乐语气模型的整体支持。由于快感缺失在任何抑郁症动物模型中的焦点作用, 有人建议, 在考虑将 UCMS 实施到实验室时, 第一步应该是验证程序能力, 以诱导无休止状态12。这将促进实验室间更好的标准化, 并可能成为未来研究进一步揭示这种紊乱的基础。

另一项支持 UCMS 的有效性的功能是抑郁症的模型, 即 UCMS 诱导的行为和分子改变是由慢性而不是急性的, 由先前验证为有效的药物治疗而逆转的。抗抑郁药12。长期的治疗效果类似于抗抑郁药在人类中的作用, 通常在治疗2-3 周后才开始显现101,102。在这方面, 与78和尖沙咀103相比, UCMS 具有卓越的脸部有效性, 在急性治疗后也能获得效果。与尖沙咀和 UCMS 不同的是, 抑郁症的社会失败模式并不明显, 这是抑郁症的最佳动物模型。然而, 与 UCMS 和尖沙咀相比, 其他慢性压力模型更加冗长和昂贵。

著名的小鼠菌株已被用于 UCMS 研究。其中更常见的菌株是 C57BL/6 和 BALB/cJ21,34。我们利用雄性 ICR 炎症小鼠进行了大量的研究, 证明了 UCMS 在这一菌株中的有效性。此外, 利用 ICR 炎症小鼠提高了协议的生态有效性, 由于动物之间的遗传变异率高 (与转基因小鼠菌株相比)30,75,104,105,106

对于本协议中未包括的其他药物的建议剂量, 但在其他 UCMS 协议中使用, 请参阅: flouxetine464749104105、帕罗西汀51、丙咪嗪35,41,42,43, 地昔帕明18,44,45, 马普替林46,47,米安色林48, 褪黑激素43,49, URB59754和其他天然化合物37,55,56,57,58.

在 UCMS 协议中还经常采用一些额外的结果措施, 其中包括: (一) 对行为绝望的衡量 (见《议定书》划定的参考文献78 );(二) 尖沙咀: 行为绝望的另一项措施 (见《议定书划定》参考文献103 );(iii) 涂层状态的飞溅试验和评价: 两种梳理行为指标和冷漠的推定措施 (见《议定书划定》参考文献107 );(iv) 社会新奇性的社交性/偏好: 社会行为措施108 (参见《议定书》划定的参考109 );和 (v) 性行为: 另一项关于享乐语气的措施 (参见《协议划定参考文献75 》)。此外, UCMS 用于评估与抑郁症有关的 neuromolecular、内分泌和其他生物措施5072110111112113,114,115,116 (具体而言, 参见参考文献117,118通过 ELISA 协议划定的 BDNF 评估)。

UCMS 协议中有几个关键步骤: (i) 至关重要的是, 所有治疗组的小鼠都将被安置在一起, 而不是在单独的笼子里。例如, 如果有3个治疗组 (依他普仑、NHT 和生理盐水), 将有2只老鼠从2组和1只鼠标从其余组在每个笼中。混合集团的住房将挫败的可能性, 结果是亦即的住房条件, 而不是处理本身。(二) 幼稚的老鼠必须与受压力的老鼠分开安置, 因为有压力的老鼠的住房压力90119120 , 因此, 可能阻碍或减弱压力操纵。(iii) 以前的 UCMS 议定书已指示单一住房, 而不是集体住房32,121;我们建议, 后者作为单一的住房可能会导致进一步易感性的压力, 小鼠和大鼠122,123,124,125。(iv) 必须努力设计 UCMS 时间表, 以确保不可预测性 (每周一次随机接触每个压力源);但是, 只要保持不可预测性, 就可以在整个实验中修改时间表。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有什么可透露的。

Acknowledgments

作者想感谢加利布鲁尔在视频制作方面的帮助。这项研究得到了以色列科学、技术 & 空间部 (313552 号赠款)、以色列国家精神生物学研究所 (NIPI-208-16-17b) 和开放大学基金会的支持。

Materials

Name Company Catalog Number Comments
Heating lamp Ikea AA-19025-3
Heating pillow Sachs EF-188B
Mice restrainer
Portable electronic balance (*.** g)
Standard rubber stopper, size 5 Ancare #5.5R To avoid spillage during SPT
Straight open drinking tube (2.5") Ancare OT-100 To avoid spillage during SPT (insert drinking tube into rubber stopper)
2% sucrose solution
50 mL conical centrifuge tube For the SPT
Pre-adolescent (approximately 20-days old) ICR outbred mice Envigo Hsd:ICR (CD-1)

DOWNLOAD MATERIALS LIST

References

  1. Murray, C. J., et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study. Lancet. 380, (9859), 2197-2223 (2010).
  2. Bromet, E., et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Medicine. 9, (2011).
  3. Kessler, R. C., et al. The Epidemiology of Major Depressive Disorder. JAMA: The Journal of the American Medical Association. 289, (23), 3095 (2003).
  4. Doom, J. R., Haeffel, G. J. Teasing apart the effects of cognition, stress, and depression on health. American Journal of Health Behavior. 37, (5), 610-619 (2013).
  5. Mykletun, A., Bjerkeset, O., Øverland, S., Prince, M., Dewey, M., Stewart, R. Levels of anxiety and depression as predictors of mortality: The HUNT study. British Journal of Psychiatry. 195, (2), 118-125 (2009).
  6. Moussavi, S., Chatterji, S., Verdes, E., Tandon, A., Patel, V., Ustun, B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet. 370, (9590), 851-858 (2007).
  7. Otte, C., et al. Major depressive disorder. Nature Reviews Disease Primers. 2, (2016).
  8. Rush, A. J., et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Amerian Journal of Psychiatry. 163, (11), 1905-1917 (2006).
  9. Cuijpers, P., Karyotaki, E., Weitz, E., Andersson, G., Hollon, S. D., Van Straten, A. The effects of psychotherapies for major depression in adults on remission, recovery and improvement: A meta-analysis. Journal of Affective Disorder. 159, 118-126 (2014).
  10. Lam, R. W., et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder. Canadian Journal of Psychiatry. 61, (9), 510-523 (2016).
  11. Kupfer, D. J., Frank, E., Phillips, M. L. Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet. 379, (9820), 1045-1055 (2012).
  12. Willner, P. Chronic mild stress (CMS) revisited: Consistency and behavioural- neurobiological concordance in the effects of CMS. Neuropsychobiology. 52, (2), 90-110 (2005).
  13. Surget, A., Belzung, C. Unpredictable chronic mild stress in mice. Experimental Animal Model in Neurobehavior Research. 79-112 (2009).
  14. Hoffman, K. L. 2 -What can animal models tell us about depressive disorders?. Modelling Neuropsychiatric Disorder in Laboratory Animals. (2016).
  15. Cryan, J. F., Holmes, A. The ascent of mouse: advances in modelling human depression and anxiety. Nature Review Drug Discovery. 4, (9), 775-790 (2005).
  16. Katz, R. J., Roth, K. A., Carroll, B. J. Acute and chronic stress effects on open field activity in the rat: Implications for a model of depression. Neuroscience and Biobehavior Reviews. 5, (2), 247-251 (1981).
  17. Willner, P. The validity of animal models of depression. Psychopharmacology (Berlin). 83, (1), 1-16 (1984).
  18. Willner, P., Towell, A., Sampson, D., Sophokleous, S., Muscat, R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berlin). 93, (3), 358-364 (1987).
  19. Ducottet, C., Belzung, C. Behaviour in the elevated plus-maze predicts coping after subchronic mild stress in mice. Physiology and Behavior. 81, (3), 417-426 (2004).
  20. Treadway, M. T., Zald, D. H. Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neuroscience and Biobehavioral Reviews. 35, (3), 537-555 (2011).
  21. Pothion, S., Bizot, J. C., Trovero, F., Belzung, C. Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behavioural Brain Research. 155, (1), 135-146 (2004).
  22. American Psychiatric Association. . Diagnostic and Statistical Manual of Mental Disorders. 5th Edition (DSM-5). (2013).
  23. Pizzagalli, D. A. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annual Review Clinical Psychology. 10, 393-423 (2014).
  24. Nollet, M., Le Guisquet, A. -M., Belzung, C. Models of depression: unpredictable chronic mild stress in mice. Current Protocols in Pharmacology. Chapter 5 (June), Unit 5.65 (2013).
  25. Doron, R., Lotan, D., Rak-Rabl, A., Raskin-Ramot, A., Lavi, K., Rehavi, M. Anxiolytic effects of a novel herbal treatment in mice models of anxiety. Life Science. 90, (25-26), 995-1000 (2012).
  26. Rössler, A. S., Joubert, C., Chapouthier, G. Chronic mild stress alleviates anxious behaviour in female mice in two situations. Behavioural Processes. 49, (3), 163-165 (2000).
  27. Maslova, L. N., Bulygina, V. V., Markel, A. L. Chronic stress during prepubertal development: Immediate and long-lasting effects on arterial blood pressure and anxiety-related behavior. Psychoneuroendocrinology. 27, (5), 549-561 (2002).
  28. Zhu, S., Shi, R., Wang, J., Wang, J. -F., Li, X. -M. Unpredictable chronic mild stress not chronic restraint stress induces depressive behaviours in mice. Neuroreport. 25, (14), 1151-1155 (2014).
  29. Bondi, C. O., Rodriguez, G., Gould, G. G., Frazer, A., Morilak, D. A. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology. 33, (2), 320-331 (2008).
  30. Burstein, O., et al. Escitalopram and NHT normalized stress-induced anhedonia and molecular neuroadaptations in a mouse model of depression. PLoS One. 12, (11), (2017).
  31. Willner, P., Muscat, R., Papp, M. Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neuroscience and Biobehavioral Reviews. 16, (4), 525-534 (1992).
  32. Papp, M., Willner, P., Muscat, R. An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology (Berlin). 104, (2), 255-259 (1991).
  33. Kumar, B., Kuhad, A., Chopra, K. Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: Behavioral and biochemical evidences. Psychopharmacology (Berlin). 214, (4), 819-828 (2011).
  34. Mineur, Y. S., Belzung, C., Crusio, W. E. Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behavioral Brain Research. 175, (1), 43-50 (2006).
  35. Ibarguen-Vargas, Y., et al. Deficit in BDNF does not increase vulnerability to stress but dampens antidepressant-like effects in the unpredictable chronic mild stress. Behavioral Brain Research. 202, (2), 245-251 (2009).
  36. Luo, D. D., An, S. C., Zhang, X. Involvement of hippocampal serotonin and neuropeptide Y in depression induced by chronic unpredicted mild stress. Brain Research Bulletin. 77, (1), 8-12 (2008).
  37. Bhutani, M. K., Bishnoi, M., Kulkarni, S. K. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacolology and Biochemistry Behavior. 92, (1), 39-43 (2009).
  38. Lin, Y. H., Liu, A. H., Xu, Y., Tie, L., Yu, H. M., Li, X. J. Effect of chronic unpredictable mild stress on brain-pancreas relative protein in rat brain and pancreas. Behavior Brain Research. 165, (1), 63-71 (2005).
  39. Cox, B. M., Alsawah, F., McNeill, P. C., Galloway, M. P., Perrine, S. A. Neurochemical, hormonal, and behavioral effects of chronic unpredictable stress in the rat. Behavior Brain Research. 220, (1), 106-111 (2011).
  40. Lagunas, N., Calmarza-Font, I., Diz-Chaves, Y., Garcia-Segura, L. M. Long-term ovariectomy enhances anxiety and depressive-like behaviors in mice submitted to chronic unpredictable stress. Hormones and Behavior. 58, (5), 786-791 (2010).
  41. Papp, M., Klimek, V., Willner, P. Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology (Berlin). 115, (4), 441-446 (1994).
  42. Harkin, A., Houlihan, D. D., Kelly, J. P. Reduction in preference for saccharin by repeated unpredictable stress in mice and its prevention by imipramine. Journal of Psychopharmacology. 16, (2), 115-123 (2002).
  43. Detanico, B. C., et al. Antidepressant-like effects of melatonin in the mouse chronic mild stress model. European Journal of Pharmacology. 607, (1-3), 121-125 (2009).
  44. Kubera, M., et al. Prolonged desipramine treatment increases the production of interleukin-10, an anti-inflammatory cytokine, in C57BL/6 mice subjected to the chronic mild stress model of depression. Journal of Affective Disorder. 63, (1-3), 171-178 (2001).
  45. Moreau, J. L., Jenck, F., Martin, J. R., Mortas, P., Haefely, W. E. Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmentum self-stimulation behavior in rats. European Neuropsychopharmacoly. 2, (1), 43-49 (1992).
  46. Muscat, R., Papp, M., Willner, P. Reversal of stress-induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline. Psychopharmacology (Berlin). 109, (4), 433-438 (1992).
  47. Yalcin, I., Belzung, C., Surget, A. Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behavioural Brain Research. 193, (1), 140-143 (2008).
  48. Moreau, J. L., Bourson, A., Jenck, F., Martin, J. R., Mortas, P. Curative effects of the atypical antidepressant mianserin in the chronic mild stress-induced anhedonia model of depression. Journal of Psychiatry Neuroscience. 19, (1), 51-56 (1994).
  49. Kopp, C., Vogel, E., Rettori, M. C., Delagrange, P., Misslin, R. The effects of melatonin on the behavioural disturbances induced by chronic mild stress in C3H/He mice. Behavioural Pharmacology. 10, (1), 73-83 (1999).
  50. Doron, R., et al. Escitalopram or novel herbal mixture treatments during or following exposure to stress reduce anxiety-like behavior through corticosterone and BDNF modifications. PLoS One. 9, (4), (2014).
  51. Elizalde, N., et al. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: Effect of antidepressant treatment. Psychopharmacology (Berlin). 199, (1), 1-14 (2008).
  52. Casarotto, P. C., Andreatini, R. Repeated paroxetine treatment reverses anhedonia induced in rats by chronic mild stress or dexamethasone. European Neuropsychopharmacology. 17, (11), 735-742 (2007).
  53. Papp, M., Gruca, P., Boyer, P. -A., Mocaër, E. Effect of agomelatine in the chronic mild stress model of depression in the rat. Neuropsychopharmacology. 28, (4), 694-703 (2003).
  54. Bortolato, M., et al. Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biological Psychiatry. 62, (10), (2007).
  55. Liu, Y., et al. Antidepressant-like effects of tea polyphenols on mouse model of chronic unpredictable mild stress. Pharmacology Biochemistry Behavior. 104, (1), 27-32 (2013).
  56. Dai, Y., et al. Metabolomics study on the anti-depression effect of xiaoyaosan on rat model of chronic unpredictable mild stress. Journal of Ethnopharmacology. 128, (2), 482-489 (2010).
  57. Zhang, D., Wen, X. S., Wang, X. Y., Shi, M., Zhao, Y. Antidepressant effect of Shudihuang on mice exposed to unpredictable chronic mild stress. Jouranl of Ethnopharmacology. 123, (1), 55-60 (2009).
  58. Li, Y. C., et al. Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 33, (3), 435-449 (2009).
  59. Monleon, S., Parra, A., Simon, V. M., Brain, P. F., D'Aquila, P., Willner, P. Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine. Psychopharmacology (Berlin). 117, (4), 453-457 (1995).
  60. Papp, M., Moryl, E., Willner, P. Pharmacological validation of the chronic mild stress model of depression. European Journal of Pharmacology. 296, (2), 129-136 (1996).
  61. Jansen, K., et al. Childhood trauma, family history, and their association with mood disorders in early adulthood. Acta Psychiatrica Scandinavica. (4), (2016).
  62. Kessler, R. C. THE EFFECTS OF STRESSFUL LIFE EVENTS ON DEPRESSION. Annual Review of Psychology. 48, (1), 191-214 (1997).
  63. Brady, K. T., Back, S. E. Childhood trauma, posttraumatic stress disorder, and alcohol dependence. Alcohol Research. 34, (4), 408-413 (2012).
  64. Pariante, C. M., Lightman, S. L. The HPA axis in major depression: classical theories and new developments. Trends in Neurosciences. 31, (9), 464-468 (2008).
  65. De Bellis, M. D., et al. Developmental traumatology part I: biological stress systems. Biological Psychiatry. 45, (10), 1259-1270 (1999).
  66. de Kloet, E. R., Joëls, M., Holsboer, F. Stress and the brain: from adaptation to disease. Nature Reviews Neurosciences. 6, (6), 463-475 (2005).
  67. Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., Nemeroff, C. B. The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology. 33, (6), 693-710 (2008).
  68. Trickett, P. K., Noll, J. G., Susman, E. J., Shenk, C. E., Putnam, F. W. Attentuation of cortisol across development for victims of sexual abuse. Developmental Psychopathology. 22, (1), 165-175 (2010).
  69. Bremne, J. D., Vermetten, E. Stress and development: behavioral and biological consequences. Developmental Psychopathology. 13, (3), 473-489 (2001).
  70. Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., Monteggia, L. M. Neurobiology of depression. Neuron. 34, (1), 13-25 (2002).
  71. Liu, D., et al. Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels and BDNF expression in rats. Behavioural and Brain Research. 264, 9-16 (2014).
  72. Silberman, D. M., Wald, M., Genaro, A. M. Effects of chronic mild stress on lymphocyte proliferative response. Participation of serum thyroid hormones and corticosterone. Int Immunopharmacol. 2, (4), 487-497 (2002).
  73. Bielajew, C., Konkle, A. T., Merali, Z. The effects of chronic mild stress on male Sprague-Dawley and Long Evans rats: I. Biochemical and physiological analyses. Behavioural and Brain Research. 136, (2), 583-592 (2002).
  74. Vrieze, E., et al. Dimensions in major depressive disorder and their relevance for treatment outcome. Journal of Affective Disorder. 155, (1), 35-41 (2014).
  75. Doron, R., et al. A novel herbal treatment reduces depressive-like behaviors and increases BDNF levels in the brain of stressed mice. Life Sciences. 94, (2), 151-157 (2014).
  76. Nestler, E. J., Hyman, S. E. Animal models of neuropsychiatric disorders. Nature Neurosciences. 13, (10), 1161-1169 (2010).
  77. Yan, H. -C., Cao, X., Das, M., Zhu, X. -H., Gao, T. -M. Behavioral animal models of depression. Neuroscience Bulletin. 26, (4), 327-337 (2010).
  78. Yankelevitch-Yahav, R., Franko, M., Huly, A., Doron, R. The Forced Swim Test as a Model of Depressive-like Behavior. Journal of Visualized Experiment. (97), (2015).
  79. Cryan, J. F., Mombereau, C., Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosciences and Biobehavioral Reviews. 29, (4-5), 571-625 (2005).
  80. Berton, O., et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 80, (5762), 864-868 (2006).
  81. Krishnan, V., Nestler, E. J. Animal models of depression: Molecular perspectives. Current Topics in Behavioral Neurosciences. 7, (1), 121-147 (2011).
  82. Belzung, C., Lemoine, M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biology of Mood and Anxiety Disorder. 1, (1), 9 (2011).
  83. Björkqvist, K. Social defeat as a stressor in humans. Physiology and Behavior. 73, (3), 435-442 (2001).
  84. Parihar, V. K., Hattiangady, B., Kuruba, R., Shuai, B., Shetty, A. K. Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Molecular Psychiatry. 16, (2), 171-183 (2011).
  85. Haile, C. N., GrandPre, T., Kosten, T. A. Chronic unpredictable stress, but not chronic predictable stress, enhances the sensitivity to the behavioral effects of cocaine in rats. Psychopharmacology (Berlin). 154, (2), 213-220 (2001).
  86. Suo, L., et al. Predictable chronic mild stress in adolescence increases resilience in adulthood. Neuropsychopharmacology. 38, (8), 1387-1400 (2013).
  87. Gameiro, G. H., et al. Nociception- and anxiety-like behavior in rats submitted to different periods of restraint stress. Physiology and Behavior. 87, (4), 643-649 (2006).
  88. Anisman, H., Matheson, K. Stress, depression, and anhedonia: Caveats concerning animal models. Neuroscience and Biobehavioural Reviews. 29, (4-5), 525-546 (2005).
  89. Carr, W. J., Martorano, R. D., Krames, L. Responses of mice to odors associated with stress. J Comp Physiol Psychol. 71, 223-228 (1970).
  90. Zalaquett, C., Thiessen, D. The effects of odors from stressed mice on conspecific behavior. Physiology and Behavior. 50, (1), 221-227 (1991).
  91. Burstein, O., Shoshan, N., Doron, R., Akirav, I. Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD. Progess in Neuro-Psychopharmacology Biological psychiatry. 84, (Part A), 129-139 (2018).
  92. Hedrich, H. J., Nicklas, W. Housing and Maintenance. Lab Mouse. 521-545 (2012).
  93. Molendijk, M. L., Spinhoven, P., Polak, M., Bus, B. A. A., Penninx, B. W. J. H., Elzinga, B. M. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Molecular Psychiatry. 19, (7), 791-800 (2014).
  94. Chen, B., Dowlatshahi, D., MacQueen, G. M., Wang, J. F., Young, L. T. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biological Psychiatry. 50, (4), 260-265 (2001).
  95. Tye, K. M., et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 493, (7433), 537-541 (2013).
  96. Hamani, C., et al. Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: Role of serotonin and brain derived neurotrophic factor. Biological Psychiatry. 71, (1), 30-35 (2012).
  97. Hill, M. N., Hellemans, K. G. C., Verma, P., Gorzalka, B. B., Weinberg, J. Neurobiology of chronic mild stress: Parallels to major depression. Neuroscience and Biobehavior Reviews. 36, (9), 2085-2117 (2012).
  98. Kasch, K. L., Rottenberg, J., Ba Arnow,, Gotlib, I. H. Behavioral activation and inhibition systems and the severity and course of depression. Journal of Abnormal Psychology. 111, (4), 589-597 (2002).
  99. Faull, J. R., Halpern, B. P. Reduction of sucrose preference in the hamster by gymnemic acid. Physiology and Behavior. 7, (6), 903-907 (1971).
  100. Moreau, J. -L., Scherschlicht, R., Jenck, F., Martin, J. R. Chronic mild stress-induced anhedonia model of depression; sleep abnormalities and curative effects of electroshock treatment. Behavioural Pharmacology. 6, (7), 682-687 (1995).
  101. Blier, P. Optimal use of antidepressants: when to act? J Psychiatry Neurosci. 34, (1), 80 (2009).
  102. Frazer, A., Benmansour, S. Delayed pharmacological effects of antidepressants. Mol Psychiatry. 7, S23-S28 (2002).
  103. Can, A., Dao, D. T., Terrillion, C. E., Piantadosi, S. C., Bhat, S., Gould, T. D. The Tail Suspension Test. Journal of Visualized Experiments. (58), (2011).
  104. Song, L., Che, W., Min-wei, W., Murakami, Y., Matsumoto, K. Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress. Pharmacology Biochemistry and Behavior. 83, (2), 186-193 (2006).
  105. Mao, Q. Q., Ip, S. P., Ko, K. M., Tsai, S. H., Che, C. T. Peony glycosides produce antidepressant-like action in mice exposed to chronic unpredictable mild stress: Effects on hypothalamic-pituitary-adrenal function and brain-derived neurotrophic factor. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 33, (7), 1211-1216 (2009).
  106. Lutz, C. M., Linder, C. C., Davisson, M. T. Strains, Stocks and Mutant Mice. Lab Mouse. 37-56 (2012).
  107. Yalcin, I., Aksu, F., Belzung, C. Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. European Journal of Pharmacology. 514, (2-3), 165-174 (2005).
  108. Van Boxelaere, M., Clements, J., Callaerts, P., D'Hooge, R., Callaerts-Vegh, Z. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains. PLoS One. 12, (11), (2017).
  109. Nadler, J. J., et al. Automated apparatus for quantitation of social approach behaviors in mice. Genes, Brain Behavior. 3, (5), 303-314 (2004).
  110. Girard, I., Garland, T. Plasma corticosterone response to acute and chronic voluntary exercise in female house mice. Journal of Applied Physiology. 92, (4), 1553-1561 (2002).
  111. Gumuslu, E., et al. The antidepressant agomelatine improves memory deterioration and upregulates CREB and BDNF gene expression levels in unpredictable chronic mild stress (UCMS)-exposed mice. Drug Target Insights. 2014, (8), 11-21 (2014).
  112. Willner, P., Golembiowska, K., Klimek, V., Muscat, R. Changes in mesolimbic dopamine may explain stress-induced anhedonia. Psychobiology. 19, (1), 79-84 (1991).
  113. Peng, Y. L., Liu, Y. N., Liu, L., Wang, X., Jiang, C. L., Wang, Y. X. Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress. Journal of Neuroinflammation. 9, (2012).
  114. Liu, B., et al. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience. 294, 193-205 (2015).
  115. Yalcin, I., Aksu, F., Bodard, S., Chalon, S., Belzung, C. Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: Possible involvement of the noradrenergic system. Behavioural Pharmacology. 18, (7), 623-631 (2007).
  116. Mineur, Y. S., Belzung, C., Crusio, W. E. Functional implications of decreases in neurogenesis following chronic mild stress in mice. Neuroscience. 150, (2), 251-259 (2007).
  117. Simchon-Tenenbaum, Y., Weizman, A., Rehavi, M. Alterations in brain neurotrophic and glial factors following early age chronic methylphenidate and cocaine administration. Behav Brain Research. 282, 125-132 (2015).
  118. ELISA: Methods and Protocols. Hnasko, R. (2015).
  119. Watanabe, S. Social factors modulate restraint stress induced hyperthermia in mice. Brain Research. 1624, 134-139 (2015).
  120. Mineur, Y. S., Prasol, D. J., Belzung, C., Crusio, W. E. Agonistic behavior and unpredictable chronic mild stress in mice. Behaviour Genetics. 33, (5), 513-519 (2003).
  121. Frisbee, J. C., Brooks, S. D., Stanley, S. C., d'Audiffret, A. C. An Unpredictable Chronic Mild Stress Protocol for Instigating Depressive Symptoms, Behavioral Changes and Negative Health Outcomes in Rodents. Journal of Visualized Experiments. (106), (2015).
  122. Westenbroek, C., Ter Horst, G. J., Roos, M. H., Kuipers, S. D., Trentani, A., Den Boer, J. A. Gender-specific effects of social housing in rats after chronic mild stress exposure. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 27, (1), 21-30 (2003).
  123. Bartolomucci, A., et al. Individual housing induces altered immuno-endocrine responses to psychological stress in male mice. Psychoneuroendocrinology. 28, (4), 540-558 (2003).
  124. Võikar, V., Polus, A., Vasar, E., Rauvala, H. Long-term individual housing in C57BL/6J and DBA/2 mice: Assessment of behavioral consequences. Genes, Brain and Behavior. 4, (4), (2005).
  125. Krohn, T. C., Sørensen, D. B., Ottesen, J. L., Hansen, A. K. The effects of individual housing on mice and rats: a review. Animal Welfare. 15, (4), 343-352 (2006).

Comments

0 Comments


    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Usage Statistics