Induction and Scoring of Graft-Versus-Host Disease in a Xenogeneic Murine Model and Quantification of Human T Cells in Mouse Tissues using Digital PCR

This article has been accepted and is currently in production

Abstract

Acute graft-versus-host disease (GVHD) is a significant limitation for patients receiving hematopoietic stem cell transplant as therapy for hematological deficiencies and malignancies. Acute GVHD occurs when donor T cells recognize host tissues as a foreign antigen and mount an immune response to the host. Current treatments involve toxic immunosuppressive drugs that render patients susceptible to infection and recurrence. Thus, there is ongoing research to provide an acute GVHD therapy that can effectively target donor T cells and reduce side effects. Much of this pre-clinical work uses the xenogenic GVHD (xenoGVHD) murine model that allows for testing of immunosuppressive therapies on human cells rather than murine cells in an in vivo system. This protocol outlines how to induce xenoGVHD and how to blind and standardize clinical scoring to ensure consistent results. Additionally, this protocol describes how to use digital PCR to detect human T cells in mouse tissues, which can subsequently be used to quantify efficacy of tested therapies. The xenoGVHD model not only provides a model to test GVHD therapies but any therapy that can suppress human T cells, which could then be applied to many inflammatory diseases.