In JoVE (1)

Other Publications (2)

Articles by Andrew D. Bantly in JoVE

Other articles by Andrew D. Bantly on PubMed

CellVue Claret, a New Far-red Dye, Facilitates Polychromatic Assessment of Immune Cell Proliferation

Immunological Investigations. 2007  |  Pubmed ID: 18161520

Flow cytometric analyses of immune cell proliferation, differentiation, and function are limited by the number of different fluorochromes that can be resolved simultaneously. Additional colors to expand functional analytic capability will facilitate higher dimensional analyses of heterogeneous cell populations by basic and clinical scientists. Our aim in these studies was to evaluate CellVue Claret, a fluorescent, far-red emitting, membrane intercalating dye (excitation maximum: 655 nm, emission maximum 677 nm), as an alternative and/or complementary probe to PKH26 and CFSE(1) for polychromatic studies of immune cell proliferation and function. Using a BD FACSCalibur and human peripheral blood mononuclear cells (PBMCs) from 8 different donors (2 donors studied twice), we compared CellVue Claret with the two most commonly used visible-emitting proliferation dyes, PKH26 and CFSE, in terms of: (1) compatibility with 7-Amino-actinomycin D (7-AAD) as a viability marker; (2) effect of dye labeling on lymphocyte viability; and (3) the proliferative response of CD3+ T lymphocytes from 0-96 hours as assessed by dilution of each of the 3 cell tracking dyes in cultures stimulated with anti-CD3 plus IL-2. Post-labeling recoveries and viabilities were similar for all 3 dyes, with modestly higher initial staining intensities and coefficients of variation for CellVue Claret than for CFSE or PKH26. Lymphocyte viabilities in stimulated or unstimulated cultures were also unaffected by choice of dye. Proliferative responses of viable CD3+ lymphocytes were comparable for all three dyes, whether results were reported as Proliferative Fraction (percent of cells that had divided one or more times) or as Precursor Frequency (percent of parent population that had gone on to proliferate in response to anti-CD3 plus IL-2). In summary, T cell proliferation analysis using CellVue Claret gives results equivalent to those obtained with PKH26 or CFSE, expanding the choice of proliferation dyes suitable for use in high dimensional polychromatic studies on flow cytometers with far red (633 nm-658 nm) excitation capabilities.

Abundant Anti-apoptotic BCL-2 is a Molecular Target in Leukaemias with T(4;11) Translocation

British Journal of Haematology. Jun, 2008  |  Pubmed ID: 18422996

Chemotherapy resistance from imbalanced apoptosis regulation may contribute to poor outcome in leukaemias with t(4;11). Anti-apoptotic BCL-2 expression and target modulation were characterized in cell lines with t(4;11) and BCL-2 expression was examined in MLL and non-MLL infant/paediatric leukaemia cases by Western blot analysis and/or real-time polymerase chain reaction. Cytotoxicity of Genasensetrade mark (Oblimersen Sodium, G3139) alone or combined with cytotoxic drugs was assessed by MTT [(3-4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assays of the cell lines, applying pharmacostatistical response surface modelling of drug interactions. Apoptosis and cell cycle were evaluated by flow cytometry in RS4:11 cells. Primary leukaemias and cell lines with t(4;11) expressed abundant BCL2 mRNA and protein. Variable, sometimes substantial BCL2 mRNA was detected in other leukaemia subtypes. G3139 reduced BCL2 mRNA and protein in RS4:11 cells. The most sensitive cell line to single-agent G3139 was RS4:11. Low G3139 concentrations sensitized RS4:11 and MV4-11 cells to select anti-leukaemia cytotoxic drugs. In RS4:11 cells, combining G3139 with doxorubicin (ADR) increased active caspase 3 and TUNEL staining compared to ADR alone, indicating greater apoptosis, and G3139 increased S-phase progression. The abundant BCL-2 affords a molecular target in leukaemias with t(4;11). G3139 exhibits preclinical activity and synergy with select cytotoxic agents in RS4:11 and MV4-11 cells, and these effects occur through apoptosis.

simple hit counter