In JoVE (1)

Other Publications (46)

Articles by Huajun Jin in JoVE

Other articles by Huajun Jin on PubMed

Production and Characterization of a Complete Set of Individual Chromosome Additions from Oryza Officinalis to Oryza Sativa Using RFLP and GISH Analyses

TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik. Nov, 2005  |  Pubmed ID: 16177899

Monosomic alien addition lines (MAALs) are valuable materials for comparative analyses of two distinct genomes, for elucidating introgression mechanisms, and for dissecting genes controlling complex traits. In the study reported here, MAALs of rice containing the complete genome of Oryza sativa and individual chromosomes of Oryza officinalis were produced. Interspecific hybridizations were made between O. sativa L. ssp. Japonica (CV, Hejiang 19, 2 n = 24, AA) and O. officinalis (Acc. HY018, 2 n = 24, CC). Two backcrosses were made to the cultivated rice to obtain BC2F1 plants. Through RFLP and GISH analyses, 25 MAALs (2 n = 25, AA + 1C) were identified and divided into 12 syntenic groups, designated MAALs 1-12. MAALs 1, 2, 3, 5, 7 and 10 were each represented by one plant, MAALs 8, 11 and 12 by two plants, MAALs 6 and 9 by four plants, and MAAL 4 by five plants. An ideogram of the C-genome of O. officinalis was constructed, based on GISH analysis of the interspecific hybrid and the MAALs. Comparative RFLP maps showed strong syntenic associations between the A-genomes and C-genomes. Chromosomal arrangements such as translocations and duplications were detected in different alien chromosomes of the MAALs. The complete set of O. officinalis MAALs generated here provides a novel manipulation platform for exploiting and utilizing the O. officinalis genome and carrying out genetic studies.

Identification of Quantitative Trait Loci Across Recombinant Inbred Lines and Testcross Populations for Traits of Agronomic Importance in Rice

Genetics. Feb, 2006  |  Pubmed ID: 16322522

This study was conducted to determine whether quantitative trait loci (QTL) controlling traits of agronomic importance detected in recombinant inbred lines (RILs) are also expressed in testcross (TC) hybrids of rice. A genetic map was constructed using an RIL population derived from a cross between B5 and Minghui 63, a parent of the most widely grown hybrid rice cultivar in China. Four TC hybrid populations were produced by crossing the RILs with three maintaining lines for the widely used cytoplasmic male-sterile (CMS) lines and the genic male-sterile line Peiai64s. The mean values of the RILs for the seven traits investigated were significantly correlated to those of the F1 hybrids in the four TC populations. Twenty-seven main-effect QTL were identified in the RILs. Of these, the QTL that had the strongest effect on each of the seven traits in the RILs was detected in two or more of the TC populations, and six other QTL were detected in one TC population. Epistatic analysis revealed that the effect of epistatic QTL was relatively weak and cross combination specific. Searching publicly available QTL data in rice revealed the positional convergence of the QTL with the strongest effect in a wide range of populations and under different environments. Since the main-effect QTL is expressed across different testers, and in different genetic backgrounds and environments, it is a valuable target for gene manipulation and for further application in rice breeding. When a restorer line that expresses main-effect QTL is bred, it could be used in a number of cross combinations.

Molecular and Cytogenetic Characterization of an Oryza Officinalis-O. Sativa Chromosome 4 Addition Line and Its Progenies

Plant Molecular Biology. Nov, 2006  |  Pubmed ID: 16941211

The wild species Oryza officinalis Wall. ex Watt (2n = 24, CC) is a valuable genetic resource for rice (O. sativa L., 2n = 24, AA) breeding and genomics research. Genomic in situ hybridization (GISH) and molecular approaches were used to determine the nature and composition of the additional chromosome in a monosomic alien addition line (MAAL) of O. officinalis and its backcross progenies. The extra wild species chromosome in the MAAL (2n = 2x = 25) was a mosaic one, comprising of the long arm of chromosome 4 from O. officinalis and the short arm from O. sativa. Comparative analysis showed that O. sativa and O. officinalis shared high synteny of restriction fragment length polymorphism (RFLP) markers and low synteny of simple sequence repeat (SSR) markers. A DNA methylation alteration was revealed at C619 in the MAAL and progenies. Analysis of progenies of the MAAL indicated that introgression segments were small in size and introgression was not evenly distributed along the long arm. One recombination hot spot between C513 and RG177 was identified, which is in a gene-rich region.

A Novel Peptide Inhibitor Targeted to Caspase-3 Cleavage Site of a Proapoptotic Kinase Protein Kinase C Delta (PKCdelta) Protects Against Dopaminergic Neuronal Degeneration in Parkinson's Disease Models

Free Radical Biology & Medicine. Nov, 2006  |  Pubmed ID: 17045926

Oxidative stress and apoptosis are considered common mediators of many neurodegenerative disorders including Parkinson's disease (PD). Recently, we identified that PKCdelta, a member of the novel PKC isoform family, is proteolytically activated by caspase-3 to induce apoptosis in experimental models of PD [Eur. J. Neurosci. 18 (6):1387-1401, 2003; Antioxid. Redox Signal. 5 (5):609-620, 2003]. Since caspase-3 cleaves PKCdelta between proline and aspartate residues at the cleavage site 324DIPD327 to activate the kinase, we developed an irreversible and competitive peptide inhibitor, Z-Asp(OMe)-Ile-Pro-Asp(OMe)-FMK (z-DIPD-fmk), to mimic the caspase-3 cleavage site of PKCdelta and tested its efficacy against oxidative stress-induced cell death in PD models. Cotreatment of z-DIPD-fmk with the parkinsonian toxins MPP(+) and 6-OHDA dose dependently attenuated cytotoxicity, caspase-3 activation, and DNA fragmentation in a mesencephalic dopaminergic neuronal cell model (N27 cells). However, z-DIPD-fmk treatment did not block MPP(+)-induced increases in caspase-9 enzyme activity. The z-DIPD-fmk peptide was much more potent (IC50 6 microM) than the most widely used and commercially available caspase-3 inhibitor z-DEVD-fmk (IC50 18 microM). Additionally, z-DIPD-fmk more effectively blocked PKCdelta cleavage and proteolytic activation than the cleavage of another caspase-3 substrate, poly(ADP-ribose) polymerase (PARP). Importantly, the peptide inhibitor z-DIPD-fmk completely rescued TH(+) neurons from MPP(+)- and 6-OHDA-induced toxicity in mouse primary mesencephalic cultures. Collectively, these results demonstrate that the PKCdelta cleavage site is a novel target for development of a neuroprotective therapeutic strategy for PD.

Simple Sequence Repeat Analyses of Interspecific Hybrids and MAALs of Oryza Officinalis and Oryza Sativa

Genetica. Oct, 2008  |  Pubmed ID: 17978880

Wild rice is a valuable resource for the genetic improvement of cultivated rice (Oryza sativa L., AA genome). Molecular markers are important tools for monitoring gene introgression from wild rice into cultivated rice. In this study, Simple sequence repeat (SSR) markers were used to analyze interspecific hybrids of O. sativa-O. officinalis (CC genome), the backcrossing progenies and the parent plants. Results showed that most of the SSR primers (335 out of 396, 84.6%) developed in cultivated rice successfully amplified products from DNA samples of wild rice O. officinalis. The polymorphism ratio of SSR bands between O. sativa and O. officinalis was as high as 93.9%, indicating differences between the two species with respect to SSRs. When the SSR markers were applied in the interspecific hybrids, only a portion of SSR primers amplified O. officinalis-specific bands in the F(1) hybrid (52.5%), BC(1) (52.5%), and MAALs (37.0%); a number of the bands disappeared. Of the 124 SSR loci that detected officinalis-specific bands in MAAL plants, 96 (77.4%) showed synteny between the A and C-genomes, and 20 (16.1%) showed duplication in the C-genome. Sequencing analysis revealed that indels, substitution and duplication contribute to the diversity of SSR loci between the genomes of O. sativa and O. officinalis.

Alterations in Cytosine Methylation and Species-specific Transcription Induced by Interspecific Hybridization Between Oryza Sativa and O. Officinalis

TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik. Nov, 2008  |  Pubmed ID: 18719877

Interspecific hybridization and polyploidization may involve programmed genetic and epigenetic changes. In this study, we used the methylation-sensitive amplified polymorphism (MSAP) method to survey cytosine methylation alterations that occurred in F(1) hybrid and BC(1) progeny following interspecific hybridization between Oryza sativa and O. officinalis. Across all 316 parental methylated sites, 25 (7.9%) cytosine methylation alterations were detected in the F(1) and/or BC(1) progeny. Thirty additional cytosine methylation alterations were detected at parental non-methylated or novel sites. In total, 55 cytosine methylation alterations (90.9% of all alterations) were detected in the F(1) hybrid, which were maintained in the BC(1) progeny. The alterations in cytosine methylation were biased toward the O. officinalis parent and were in some cases repeatable in independent hybridizations between O. sativa and O. officinalis. Twelve fragments showing cytosine methylation alterations were isolated, sequenced and subsequently validated by methylation-sensitive Southern blot analysis. Where possible, we designed species-specific primers to amplify the polymorphic transcripts from either the O. sativa or the O. officinalis parent using reverse transcription (RT)-PCR in combination with single-strand conformation polymorphism (SSCP) analysis. In four of five cases, modified gene expression could be correlated with the altered cytosine methylation pattern. Our results demonstrated cytosine methylation alterations induced by interspecific hybridization between a rice cultivar and its wild relative, and indicated a direct relationship between cytosine methylation alteration and gene expression variation.

Humanized Anti-EphB4 Antibodies for the Treatment of Carcinomas and Vasculogenesis-related Diseases

Expert Opinion on Therapeutic Patents. Jul, 2009  |  Pubmed ID: 19552516

The invention provides human, humanized or chimeric versions of anti-EphB4 mouse monoclonal antibodies that bind to the human EphB4 receptor tyrosine kinase. The described anti-EphB4 antibodies are derived from two murine mAbs #47 and #131 through framework shuffling and include those of the IgGl, IgG2, IgG3 or IgG4 human isotype. The patent further relates to pharmaceutical compositions, immunotherapeutic compositions and methods using therapeutic antibodies that bind to the human EphB4 antigen and that may induce phosphorylation and degradation of EphB4 and mediate antigen-dependent cell-mediated-cytotoxicity, complement-dependent cell-mediated cytotoxicity and/or apoptosis for the treatment of human malignancies and vasculogenesis-related disorders and diseases.

Novel Cell Death Signaling Pathways in Neurotoxicity Models of Dopaminergic Degeneration: Relevance to Oxidative Stress and Neuroinflammation in Parkinson's Disease

Neurotoxicology. Sep, 2010  |  Pubmed ID: 20005250

Parkinson's disease (PD) is a common neurodegenerative movement disorder characterized by extensive degeneration of dopaminergic neurons in the nigrostriatal system. Neurochemical and neuropathological analyses clearly indicate that oxidative stress, mitochondrial dysfunction, neuroinflammation and impairment of the ubiquitin-proteasome system (UPS) are major mechanisms of dopaminergic degeneration. Evidence from experimental models and postmortem PD brain tissues demonstrates that apoptotic cell death is the common final pathway responsible for selective and irreversible loss of nigral dopaminergic neurons. Epidemiological studies imply both environmental neurotoxicants and genetic predisposition are risk factors for PD, though the cellular mechanisms underlying selective dopaminergic degeneration remain unclear. Recent progress in signal transduction research is beginning to unravel the complex mechanisms governing dopaminergic degeneration. During the 12th International Neurotoxicology meeting, discussion at one symposium focused on several key signaling pathways of dopaminergic degeneration. This review summarizes two novel signaling pathways of nigral dopaminergic degeneration that have been elucidated using neurotoxicity models of PD. Dr. Anumantha Kanthasamy described a cell death pathway involving the novel protein kinase C delta isoform (PKCdelta) in oxidative stress-induced apoptotic cell death in experimental models of PD. Dr. Ajay Rana presented his recent work on the role of mixed lineage kinase-3 (MLK3) in neuroinflammatory processes in neurotoxic cell death. Collectively, PKCdelta and MLK3 signaling pathways provide new understanding of neurodegenerative processes in PD, and further exploration of these pathways may translate into effective neuroprotective drugs for the treatment of PD.

α-Synuclein Negatively Regulates Protein Kinase Cδ Expression to Suppress Apoptosis in Dopaminergic Neurons by Reducing P300 Histone Acetyltransferase Activity

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. Feb, 2011  |  Pubmed ID: 21307242

We recently demonstrated that protein kinase Cδ (PKCδ), an important member of the novel PKC family, is a key oxidative stress-sensitive kinase that can be activated by caspase-3-dependent proteolytic cleavage to induce dopaminergic neuronal cell death. We now report a novel association between α-synuclein (αsyn), a protein associated with the pathogenesis of Parkinson's disease, and PKCδ, in which αsyn negatively modulates the p300- and nuclear factor-κB (NFκB)-dependent transactivation to downregulate proapoptotic kinase PKCδ expression and thereby protects against apoptosis in dopaminergic neuronal cells. Stable expression of human wild-type αsyn at physiological levels in dopaminergic neuronal cells resulted in an isoform-dependent transcriptional suppression of PKCδ expression without changes in the stability of mRNA and protein or DNA methylation. The reduction in PKCδ transcription was mediated, in part, through the suppression of constitutive NFκB activity targeted at two proximal PKCδ promoter κB sites. This occurred independently of NFκB/IκBα (inhibitor of κBα) nuclear translocation but was associated with decreased NFκB-p65 acetylation. Also, αsyn reduced p300 levels and its HAT (histone acetyltransferase) activity, thereby contributing to diminished PKCδ transactivation. Importantly, reduced PKCδ and p300 expression also were observed within nigral dopaminergic neurons in αsyn-transgenic mice. These findings expand the role of αsyn in neuroprotection by modulating the expression of the key proapoptotic kinase PKCδ in dopaminergic neurons.

Transcriptional Regulation of Pro-apoptotic Protein Kinase Cdelta: Implications for Oxidative Stress-induced Neuronal Cell Death

The Journal of Biological Chemistry. Jun, 2011  |  Pubmed ID: 21467032

We previously demonstrated that protein kinase Cδ (PKCδ; PKC delta) is an oxidative stress-sensitive kinase that plays a causal role in apoptotic cell death in neuronal cells. Although PKCδ activation has been extensively studied, relatively little is known about the molecular mechanisms controlling PKCδ expression. To characterize the regulation of PKCδ expression, we cloned an ∼2-kbp 5'-promoter segment of the mouse Prkcd gene. Deletion analysis indicated that the noncoding exon 1 region contained multiple Sp sites, including four GC boxes and one CACCC box, which directed the highest levels of transcription in neuronal cells. In addition, an upstream regulatory region containing adjacent repressive and anti-repressive elements with opposing regulatory activities was identified within the region -712 to -560. Detailed mutagenesis studies revealed that each Sp site made a positive contribution to PKCδ promoter expression. Overexpression of Sp family proteins markedly stimulated PKCδ promoter activity without any synergistic transactivating effect. Furthermore, experiments in Sp-deficient SL2 cells indicated long isoform Sp3 as the essential activator of PKCδ transcription. Importantly, both PKCδ promoter activity and endogenous PKCδ expression in NIE115 cells and primary striatal cultures were inhibited by mithramycin A. The results from chromatin immunoprecipitation and gel shift assays further confirmed the functional binding of Sp proteins to the PKCδ promoter. Additionally, we demonstrated that overexpression of p300 or CREB-binding protein increases the PKCδ promoter activity. This stimulatory effect requires intact Sp-binding sites and is independent of p300 histone acetyltransferase activity. Finally, modulation of Sp transcriptional activity or protein level profoundly altered the cell death induced by oxidative insult, demonstrating the functional significance of Sp-dependent PKCδ gene expression. Collectively, our findings may have implications for development of new translational strategies against oxidative damage.

Use of MicroRNA Let-7 to Control the Replication Specificity of Oncolytic Adenovirus in Hepatocellular Carcinoma Cells

PloS One. 2011  |  Pubmed ID: 21814544

Highly selective therapy for hepatocellular carcinoma (HCC) remains an unmet medical need. In present study, we found that the tumor suppressor microRNA, let-7 was significantly downregulated in a proportion of primary HCC tissues (12 of 33, 36.4%) and HCC cell lines. In line with this finding, we have engineered a chimeric Ad5/11 fiber oncolytic adenovirus, SG7011(let7T), by introducing eight copies of let-7 target sites (let7T) into the 3' untranslated region of E1A, a key gene associated with adenoviral replication. The results showed that the E1A expression (both RNA and protein levels) of the SG7011(let7T) was tightly regulated according to the endogenous expression level of the let-7. As contrasted with the wild-type adenovirus and the control virus, the replication of SG7011(let7T) was distinctly inhibited in normal liver cells lines (i.e. L-02 and WRL-68) expressing high level of let-7 (>300 folds), whereas was almost not impaired in HCC cells (i.e. Hep3B and PLC/PRF/5) with low level of let-7. Consequently, the cytotoxicity of SG7011(let7T) to normal liver cells was successfully decreased while was almost not attenuated in HCC cells in vitro. The antitumor ability of SG7011(let7T)in vivo was maintained in mice with Hep3B xenograft tumor, whereas was greatly decreased against the SMMC-7721 xenograft tumor expressing a high level of let-7 similar with L-02 when compared to the wild-type adenovirus. These results suggested that SG7011(let7T) may be a promising anticancer agent or vector to mediate the expression of therapeutic gene, broadly applicable in the treatment for HCC and other cancers where the let-7 gene is downregulated.

Dopaminergic Neurotoxicant 6-OHDA Induces Oxidative Damage Through Proteolytic Activation of PKCδ in Cell Culture and Animal Models of Parkinson's Disease

Toxicology and Applied Pharmacology. Nov, 2011  |  Pubmed ID: 21846476

The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 μM) for 24h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 μM) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKCδ) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 μM). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKCδ(D327A) and kinase dead PKCδ(K376R) or siRNA-mediated knockdown of PKCδ protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKCδ promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKCδ expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKCδ cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKCδ(D327A) protein protected against 6-OHDA-induced PKCδ activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKCδ is a key downstream event in dopaminergic degeneration, and these results may have important translational value for development of novel treatment strategies for PD.

Infectious Prion Protein Alters Manganese Transport and Neurotoxicity in a Cell Culture Model of Prion Disease

Neurotoxicology. Oct, 2011  |  Pubmed ID: 21871919

Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrP(C)). Although the exact function of PrP(C) has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrP(C) protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC(50)=428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases.

Neuroprotective Effect of Resveratrol Against Methamphetamine-induced Dopaminergic Apoptotic Cell Death in a Cell Culture Model of Neurotoxicity

Current Neuropharmacology. Mar, 2011  |  Pubmed ID: 21886561

A growing body of evidence suggests that oxidative stress-mediated cell death signaling mechanisms may exert neurotoxic effects of methamphetamine (MA)-induced dopaminergic neuronal loss. However, the means by which oxidative stress induced by MA causes neurodegeneration remains unclear. In recent years, resveratrol has garnered considerable attention owing to its antioxidant, anti-inflammatory, anti-aging, and neuroprotective properties. In the present study, we sought to investigate the neuroprotective effects of resveratrol against apoptotic cell death in a mesencephalic dopaminergic neuronal cell culture model of MA neurotoxicity. MA treatment in the N27 dopaminergic neuronal cell model produced a time-dependent activation of the apoptotic cascade involving caspase-3 and DNA fragmentation. We found that the caspase-3 activation preceded DNA fragmentation. Notably, treatment with resveratrol almost completely attenuated MA-induced caspase-3 activity, but only partially reduced apoptotic cell death. We conclude that the neuroprotective effect of resveratrol is at least in part mediated by suppression of caspase-3 dependent cell death pathways. Collectively, our results demonstrate that resveratrol can attenuate MA-induced apoptotic cell death and suggest that resveratrol or its analogs may have therapeutic benefits in mitigating MA-induced dopaminergic neurodegeneration.

Emerging Neurotoxic Mechanisms in Environmental Factors-induced Neurodegeneration

Neurotoxicology. Aug, 2012  |  Pubmed ID: 22342404

Exposure to environmental neurotoxic metals, pesticides and other chemicals is increasingly recognized as a key risk factor in the pathogenesis of chronic neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. Oxidative stress and apoptosis have been actively investigated as neurotoxic mechanisms over the past two decades, resulting in a greater understanding of neurotoxic processes. Nevertheless, emerging evidence indicates that epigenetic changes, protein aggregation and autophagy are important cellular and molecular correlates of neurodegenerative diseases resulting from chronic neurotoxic chemical exposure. During the Joint Conference of the 13th International Neurotoxicology Association and the 11th International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health, the recent progress made toward understanding epigenetic mechanisms, protein aggregation, autophagy, and deregulated kinase activation following neurotoxic chemical exposure and the relevance to neurodegenerative conditions were one of the themes of the symposium. Dr. Anumantha G. Kanthasamy described the role of acetylation of histones and non-histone proteins in neurotoxicant-induced neurodegenerative processes in the nigral dopaminergic neuronal system. Dr. Arthi Kanthasamy illustrated the role of autophagy as a key determinant in cell death events during neurotoxic insults. Dr. Ajay Rana provided evidence for posttranslational modification of α-synuclein protein by the Mixed Linage Kinase (MLK) group of kinases to initiate protein aggregation in cell culture and animal models of Parkinson's disease. These presentations outlined emerging cutting edge mechanisms that might set the stage for future mechanistic investigations into new frontiers of molecular neurotoxicology. This report summarizes the views of symposium participants, with emphasis on future directions for study of environmentally and occupationally linked chronic neurodegenerative diseases.

Establishment of Mouse Teratocarcinomas Stem Cells Line and Screening Genes Responsible for Malignancy

PloS One. 2012  |  Pubmed ID: 22952821

The sequential transplantation of embryonal carcinoma cells in vivo can accelerate the growth and malignancy of teratocarcinomas. However, the possible molecular mechanisms in this process that reflect cancer formation in the early stage are largely unknown and. To identify which genes are associated with the changes of malignancy of teratocarcinomas, we established a tumorigenesis model in which teratocarcinoma were induced via injecting embryonic stem cells into immuno-deficiency mice, isolating teratocarcinoma stem cell from a teratocarcinoma in serum-free culture medium and injecting teratocarcinoma stem cells into immune-deficient mice continuously. By using high-throughput deep sequence technology, we identified 26 differentially expressed genes related to the changes of characteristics of teratocarcinoma stem cell in which 18 out of 26 genes were down-regulated and 8 genes were up-regulated. Among these genes, several tumor-related genes such as Gata3, Arnt and Tdgf1, epigenetic associated genes such as PHC1 and Uty were identified. Pathway enrichment analysis result revealed that Wnt signaling pathway, primary immunodeficiency pathway, antigen processing and presentation pathway and allograft rejection pathway were involved in the teratocarcinoma tumorigenesis (corrected p value<0.05). In summary, our study established a tumorigenesis model and proposed some candidate genes and signaling pathways that may play a key role in the early stage of cancer occurrence.

Wnt/beta-catenin Signaling in Embryonic Stem Cell Converted Tumor Cells

Journal of Translational Medicine. Sep, 2012  |  Pubmed ID: 22995718

Embryonic stem cells (ESCs) are pluripotent stem cells and can form tumors containing cells from all three germ layers. Similarities between pluripotent stem cells and malignant tumor cells have been identified. The purpose of this study was to obtain ESCs-converted tumor cell lines and to investigate the mechanism of malignancy in pluripotent stem cells.

N-Acetyl Cysteine Protects Against Methamphetamine-Induced Dopaminergic Neurodegeneration Via Modulation of Redox Status and Autophagy in Dopaminergic Cells

Parkinson's Disease. 2012  |  Pubmed ID: 23056996

Methamphetamine- (MA-) induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. Our previous study demonstrated that MA induces autophagy in a dopaminergic neuronal cell model (N27 cells). The cellular mechanisms underlying MA-induced autophagy and apoptosis remain poorly characterized. In the present study we sought to investigate the importance of GSH redox status in MA-induced neurotoxicity using a thiol antioxidant, N-acetylcysteine (NAC). Morphological and biochemical analysis revealed that MA-induced autophagy in N27 dopaminergic cells was associated with pronounced depletion of GSH levels. Moreover, pretreatment with NAC reduced MA-induced GSH depletion and autophagy, while depletion of GSH using L-buthionine sulfoximine (L-BSO) enhanced autophagy. Furthermore, treatment with NAC significantly attenuated MA-induced apoptotic cell death as well as oxidative stress markers, namely, 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE). Together, these results suggest that NAC exhibits significant protective effects against MA-induced dopaminergic cell death, presumably via modulation of the GSH level and autophagy. Collectively, our data provide mechanistic insights into the role of cellular GSH redox status in MA-induced autophagy and apoptotic cell death, and additional studies are needed to determine the therapeutic effectiveness of cellular redox modifiers in attenuating dopaminergic neurodegeneration in vivo.

The Combination of an Oxygen-dependent Degradation Domain-regulated Adenovirus Expressing the Chemokine RANTES/CCL5 and NK-92 Cells Exerts Enhanced Antitumor Activity in Hepatocellular Carcinoma

Oncology Reports. Mar, 2013  |  Pubmed ID: 23292657

Oncolytic adenoviruses are modified based on adenovirus serotype 5 (Ad5), which belongs to subgroup C and depends on Coxsackie-adenovirus receptor (CAR) to recognize target cells. However, expression of CAR is generally low or lost in certain tumors including hepatocellular carcinoma (HCC). By contrast, CD46 is highly expressed in various types of malignant tumor cells. Therefore, we constructed an adenovirus vector expressing the human RANTES/CCL5 gene regulated by oxygen-dependent degradation domain (ODD) and analyzed its antitumor effects in vitro and in vivo. The human RANTES/CCL5 gene was fused with ODD by PCR and the recombinant oncolytic adenovirus containing RANTES-ODD, SG511-CCL5-ODD, was constructed by the Gateway system, which infected cells by binding CD46. Viral replication experiments were performed to evaluate the selective replication ability of SG511-CCL5-ODD. RANTES expression was determined by ELISA. The chemotactic test was used to analyze the ability of the expressed RANTES to recruit NK92 cells. The antitumor effects of SG511-CCL5-ODD were examined in HCC xenografts in nude mice. A chimeric oncolytic adenovirus, SG511-CCL5-ODD, was constructed successfully. Cells infected with the recombinant virus were able to express RANTES selectively in different environments controlled by ODD and the expressed RANTES was able to recruit NK92 cells by its chemotactic effect in vitro and improve the anticancer immune response in HCC xenografts in nude mice. The chimeric adenovirus SG511-CCL5-ODD highly expressed the RANTES-ODD fusion gene in the hypoxia of HCC under the control of the ODD and effectively attracted NK92 cells and a high number of immunocytes. These factors had complementary advantages and, in combination, exerted enhanced antitumor efficacy.

Conversion of Rat Embryonic Stem Cells into Neural Precursors in Chemical-defined Medium

Biochemical and Biophysical Research Communications. Feb, 2013  |  Pubmed ID: 23321306

Rat embryonic stem (ES) cells hold great interest for the research of neurodevelopment and neurodegenerative diseases. However, neural conversion of rat ES cells in vitro has proven to be a challenge owing to the proliferation arrest and apoptosis. Here we report that rat ES cells can commit efficiently to a neural fate in the presence of CHIR99021 and Y-27632 (CY medium). In addition, CHIR99021 is crucial for maintaining the metabolic activity of differentiated rat ES cells, while Y-27632 facilitates the neural differentiation of rat ES cells by inhibiting bone morphogenetic protein expression. The chemical-defined CY medium also provides a platform for exploring the mechanism of neural commitment and optimizing the production efficiency of neural precursor from rat ES cells.

Germ-line-competent Embryonic Stem Cells of the Chinese Kunming Mouse Strain with Long-term Self-renewal Ability

Cellular Reprogramming. Jun, 2013  |  Pubmed ID: 23713430

Kunming (KM) mice are the most widely used strain in China. However, authentic embryonic stem cells (ESCs) from KM mice have never been available, and this hampers the genetic manipulation of this valuable mice strain. In this study, we show that KM ESCs can be efficiently derived and maintained in chemically defined N2B27 medium with the presence of two small molecules PD0325901 and CHIR99021 (2i medium). These KM ESCs exhibit all features of ESCs, including long-term self-renewal ability, expression of key molecular markers (Oct4, Nanog, and Sox2), the ability to form teratomas, and the capacity to incorporate into the developing embryo and then transmit through the germ line.

The Peptidyl-prolyl Isomerase Pin1 Up-regulation and Proapoptotic Function in Dopaminergic Neurons: Relevance to the Pathogenesis of Parkinson Disease

The Journal of Biological Chemistry. Jul, 2013  |  Pubmed ID: 23754278

Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117-4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP(+)) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP(+)-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP(+)-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD.

Mitochondria-targeted Antioxidants for Treatment of Parkinson's Disease: Preclinical and Clinical Outcomes

Biochimica Et Biophysica Acta. Aug, 2014  |  Pubmed ID: 24060637

Parkinson's disease is a progressive neurodegenerative disease in the elderly, and no cure or disease-modifying therapies exist. Several lines of evidence suggest that mitochondrial dysfunction and oxidative stress have a central role in the dopaminergic neurodegeneration of Parkinson's disease. In this context, mitochondria-targeted therapies that improve mitochondrial function may have great promise in the prevention and treatment of Parkinson's disease. In this review, we discuss the recent developments in mitochondria-targeted antioxidants and their potential beneficial effects as a therapy for ameliorating mitochondrial dysfunction in Parkinson's disease.

Vanadium Exposure Induces Olfactory Dysfunction in an Animal Model of Metal Neurotoxicity

Neurotoxicology. Jul, 2014  |  Pubmed ID: 24362016

Epidemiological evidence indicates chronic environmental exposure to transition metals may play a role in chronic neurodegenerative conditions such as Parkinson's disease (PD). Chronic inhalation exposure to welding fumes containing metal mixtures may be associated with development of PD. A significant amount of vanadium is present in welding fumes, as vanadium pentoxide (V2O5), and incorporation of vanadium in the production of high strength steel has become more common. Despite the increased vanadium use in recent years, the neurotoxicological effects of this metal are not well characterized. Recently, we demonstrated that V2O5 induces dopaminergic neurotoxicity via protein kinase C delta (PKCδ)-dependent oxidative signaling mechanisms in dopaminergic neuronal cells. Since anosmia (inability to perceive odors) and non-motor deficits are considered to be early symptoms of neurological diseases, in the present study, we examined the effect of V2O5 on the olfactory bulb in animal models. To mimic the inhalation exposure, we intranasally administered C57 black mice a low-dose of 182μg of V2O5 three times a week for one month, and behavioral, neurochemical and biochemical studies were performed. Our results revealed a significant decrease in olfactory bulb weights, tyrosine hydroxylase (TH) levels, levels of dopamine (DA) and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC) and increases in astroglia of the glomerular layer of the olfactory bulb in the treatment groups relative to vehicle controls. Neurochemical changes were accompanied by impaired olfaction and locomotion. These findings suggest that nasal exposure to V2O5 adversely affects olfactory bulbs, resulting in neurobehavioral and neurochemical impairments. These results expand our understanding of vanadium neurotoxicity in environmentally-linked neurological conditions.

Infusion of Human Umbilical Cord‑derived Mesenchymal Stem Cells Effectively Relieves Liver Cirrhosis in DEN‑induced Rats

Molecular Medicine Reports. Apr, 2014  |  Pubmed ID: 24481983

Cirrhosis is the long‑term outcome of chronic hepatic injury and no effective therapy is currently available for this disease. Mesenchymal stromal cells (MSCs) are multipotent cells that are easily acquired and amplified, and may be potential candidates for cell therapy against cirrhosis. This study aimed to determine the therapeutic effects of human umbilical cord‑derived MSCs (hUCMSCs) for the treatment of liver cirrhosis and identify an effective method for engrafting MSCs. The model of liver cirrhosis was established by induction of diethylnitrosamine (DEN) in rats. The isolated hUCMSCs were identified by morphology, flow cytometry and multilineage differentiation; they were injected into the vein of DEN‑induced rats at varied cell doses and infusion times. Biochemical analyses of the serum and histopathological analysis of the liver tissues were performed to evaluate the therapeutic effects of hUCMSCs in all treatment groups. The results indicated that isolated hUCMSCs were capable of self‑replication and differentiated into multiple lineages, including osteoblast‑, adipocyte‑ and hepatocyte‑like cells. Compared with the control group, administration of hUCMSCs at different cell doses and infusion times relieved DEN‑induced cirrhosis to varying degrees. The therapeutic effects of hUCMSCs on liver cirrhosis gradually improved with increased cell dose and infusion times. The improvement of cirrhosis was due to the capacity of hUCMSCs to breakdown collagen fibers in the liver. It was demonstrated that infusion of hUCMSCs effectively relieved liver cirrhosis by facilitating the breakdown of collagen fibers in a dose‑dependent manner and multiple infusions caused a relatively greater improvement in cirrhosis compared with a single infusion of hUCMSCs.

Role of Proteolytic Activation of Protein Kinase Cδ in the Pathogenesis of Prion Disease

Prion. Jan-Feb, 2014  |  Pubmed ID: 24576946

Prion diseases are infectious and inevitably fatal neurodegenerative diseases characterized by prion replication, widespread protein aggregation and spongiform degeneration of major brain regions controlling motor function. Oxidative stress has been implicated in prion-related neuronal degeneration, but the molecular mechanisms underlying prion-induced oxidative damage are not well understood. In this study, we evaluated the role of oxidative stress-sensitive, pro-apoptotic protein kinase Cδ (PKCδ) in prion-induced neuronal cell death using cerebellar organotypic slice cultures (COSC) and mouse models of prion diseases. We found a significant upregulation of PKCδ in RML scrapie-infected COSC, as evidenced by increased levels of both PKCδ protein and its mRNA. We also found an enhanced regulatory phosphorylation of PKCδ at its two regulatory sites, Thr505 in the activation loop and Tyr311 at the caspase-3 cleavage site. The prion infection also induced proteolytic activation of PKCδ in our COSC model. Immunohistochemical analysis of scrapie-infected COSC revealed loss of PKCδ positive Purkinje cells and enhanced astrocyte proliferation. Further examination of PKCδ signaling in the RML scrapie adopted in vivo mouse model showed increased proteolytic cleavage and Tyr 311 phosphorylation of the kinase. Notably, we observed a delayed onset of scrapie-induced motor symptoms in PKCδ knockout (PKCδ(-/-)) mice as compared with wild-type (PKCδ(+/+)) mice, further substantiating the role of PKCδ in prion disease. Collectively, these data suggest that PKCδ signaling likely plays a role in the neurodegenerative processes associated with prion diseases.

Protein Kinase D1 (PKD1) Phosphorylation Promotes Dopaminergic Neuronal Survival During 6-OHDA-induced Oxidative Stress

PloS One. 2014  |  Pubmed ID: 24806360

Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson's disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD.

Histone Hyperacetylation Up-regulates Protein Kinase Cδ in Dopaminergic Neurons to Induce Cell Death: Relevance to Epigenetic Mechanisms of Neurodegeneration in Parkinson Disease

The Journal of Biological Chemistry. Dec, 2014  |  Pubmed ID: 25342743

The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease.

α-Synuclein Protects Against Manganese Neurotoxic Insult During the Early Stages of Exposure in a Dopaminergic Cell Model of Parkinson's Disease

Toxicological Sciences : an Official Journal of the Society of Toxicology. Feb, 2015  |  Pubmed ID: 25416158

The pathological role of α-synuclein (α-Syn) aggregation in neurodegeneration is well recognized, but the physiological function of normal α-Syn remains unknown. As α-Syn protein contains multiple divalent metal binding sites, herein we conducted a comprehensive characterization of the role of α-Syn in manganese-induced dopaminergic neurotoxicity. We established transgenic N27 dopaminergic neuronal cells by stably expressing human wild-type α-Syn at normal physiological levels. α-Syn-expressing dopaminergic cells significantly attenuated Mn-induced neurotoxicity for 24-h exposures relative to vector control cells. To further explore cellular mechanisms, we studied the mitochondria-dependent apoptotic pathway. Analysis of a key mitochondrial apoptotic initiator, cytochrome c, revealed that α-Syn significantly reduces the Mn-induced cytochrome c release into cytosol. The downstream caspase cascade, involving caspase-9 and caspase-3 activation, during Mn exposure was also largely attenuated in Mn-treated α-Syn cells in a time-dependent manner. α-Syn cells also showed a dramatic reduction in the Mn-induced proteolytic activation of the pro-apoptotic kinase PKCδ. The generation of Mn-induced reactive oxygen species (ROS) did not differ between α-Syn and vector control cells, indicating that α-Syn exerts its protective effect independent of altering ROS generation. Inductively coupled plasma-mass spectrometry (ICP-MS) revealed no significant differences in intracellular Mn levels between treated vector and α-Syn cells. Notably, the expression of wild-type α-Syn in primary mesencephalic cells also rescued cells from Mn-induced neurotoxicity. However, prolonged exposure to Mn promoted protein aggregation in α-Syn-expressing cells. Collectively, these results demonstrate that wild-type α-Syn exhibits neuroprotective effects against Mn-induced neurotoxicity during the early stages of exposure in a dopaminergic neuronal model of PD.

Targeted Toxicants to Dopaminergic Neuronal Cell Death

Methods in Molecular Biology (Clifton, N.J.). 2015  |  Pubmed ID: 25431070

Parkinson's disease (PD ) is mainly characterized by a progressive degeneration of dopaminergic neurons in the substantia nigra resulting in chronic deficits in motor functions. Administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP ) produces PD symptoms and recapitulates the main features of PD in human and animal models. MPTP is converted to 1-methyl-4-phenylpyridine (MPP+ ), which is the active toxic compound that selectively destroys dopaminergic neurons. Here, we describe methods and protocols to evaluate MPTP/MPP+-induced dopaminergic neurodegeneration in both murine primary mesencephalic cultures and animal models. The ability of MPTP/MPP+ to cause dopaminergic neuronal cell death is assessed by immunostaining of tyrosine hydroxylase (TH).

Nanoneuromedicines for Degenerative, Inflammatory, and Infectious Nervous System Diseases

Nanomedicine : Nanotechnology, Biology, and Medicine. Apr, 2015  |  Pubmed ID: 25645958

Interest in nanoneuromedicine has grown rapidly due to the immediate need for improved biomarkers and therapies for psychiatric, developmental, traumatic, inflammatory, infectious and degenerative nervous system disorders. These, in whole or in part, are a significant societal burden due to growth in numbers of affected people and in disease severity. Lost productivity of the patient and his or her caregiver, and the emotional and financial burden cannot be overstated. The need for improved health care, treatment and diagnostics is immediate. A means to such an end is nanotechnology. Indeed, recent developments of health-care enabling nanotechnologies and nanomedicines range from biomarker discovery including neuroimaging to therapeutic applications for degenerative, inflammatory and infectious disorders of the nervous system. This review focuses on the current and future potential of the field to positively affect clinical outcomes. From the clinical editor: Many nervous system disorders remain unresolved clinical problems. In many cases, drug agents simply cannot cross the blood-brain barrier (BBB) into the nervous system. The advent of nanomedicines can enhance the delivery of biologically active molecules for targeted therapy and imaging. This review focused on the use of nanotechnology for degenerative, inflammatory, and infectious diseases in the nervous system.

Fyn Kinase Regulates Microglial Neuroinflammatory Responses in Cell Culture and Animal Models of Parkinson's Disease

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. Jul, 2015  |  Pubmed ID: 26157004

Sustained neuroinflammation mediated by resident microglia is recognized as a key pathophysiological contributor to many neurodegenerative diseases, including Parkinson's disease (PD), but the key molecular signaling events regulating persistent microglial activation have yet to be clearly defined. In the present study, we examined the role of Fyn, a non-receptor tyrosine kinase, in microglial activation and neuroinflammatory mechanisms in cell culture and animal models of PD. The well-characterized inflammogens LPS and TNFα rapidly activated Fyn kinase in microglia. Immunocytochemical studies revealed that activated Fyn preferentially localized to the microglial plasma membrane periphery and the nucleus. Furthermore, activated Fyn phosphorylated PKCδ at tyrosine residue 311, contributing to an inflammogen-induced increase in its kinase activity. Notably, the Fyn-PKCδ signaling axis further activated the LPS- and TNFα-induced MAP kinase phosphorylation and activation of the NFκB pathway, implying that Fyn is a major upstream regulator of proinflammatory signaling. Functional studies in microglia isolated from wild-type (Fyn(+/+)) and Fyn knock-out (Fyn(-/-)) mice revealed that Fyn is required for proinflammatory responses, including cytokine release as well as iNOS activation. Interestingly, a prolonged inflammatory insult induced Fyn transcript and protein expression, indicating that Fyn is upregulated during chronic inflammatory conditions. Importantly, in vivo studies using MPTP, LPS, or 6-OHDA models revealed a greater attenuation of neuroinflammatory responses in Fyn(-/-) and PKCδ (-/-) mice compared with wild-type mice. Collectively, our data demonstrate that Fyn is a major upstream signaling mediator of microglial neuroinflammatory processes in PD.

Molecular Cloning, Epigenetic Regulation, and Functional Characterization of Prkd1 Gene Promoter in Dopaminergic Cell Culture Models of Parkinson's Disease

Journal of Neurochemistry. Oct, 2015  |  Pubmed ID: 26230914

We recently identified a compensatory survival role for protein kinase D1 (PKD1) in protecting dopaminergic neurons from oxidative insult. To investigate the molecular mechanism of Prkd1 gene expression, we cloned the 5'-flanking region (1620-bp) of the mouse Prkd1 gene. Deletion analyses revealed that the -250/+113 promoter region contains full promoter activity in MN9D dopaminergic neuronal cells. In silico analysis of the Prkd1 promoter uncovered binding sites for key redox transcription factors including Sp1 and NF-κB. Over-expression of Sp1, Sp3, and NF-κB-p65 proteins stimulated Prkd1 promoter activity. Binding of Sp3 and NF-κB-p65 to the Prkd1 promoter was confirmed using chromatin immunoprecipitation. Treatment with the Sp inhibitor mithramycin A significantly attenuated Prkd1 promoter activity and PKD1 mRNA and protein expression. Further mechanistic studies revealed that inhibition of histone deacetylation and DNA methylation up-regulated PKD1 mRNA expression. Importantly, negative modulation of PKD1 signaling by pharmacological inhibition or shRNA knockdown increased dopaminergic neuronal sensitivity to oxidative damage in a human mesencephalic neuronal cell model. Collectively, our findings demonstrate that Sp1, Sp3, and NF-κB-p65 can transactivate the mouse Prkd1 promoter and that epigenetic mechanisms, such as DNA methylation and histone modification, are key regulatory events controlling the expression of pro-survival kinase PKD1 in dopaminergic neuronal cells. Previously, we demonstrated that protein kinase D1 (PKD1) plays a survival role during the early stage of oxidative stress in dopaminergic neuronal cells.

Argonaute 2: A Novel Rising Star in Cancer Research

Journal of Cancer. 2015  |  Pubmed ID: 26284139

AGO2 (Argonaute 2, EIF2C2) is the only member in AGO family with catalytic activity and of extreme importance during small RNAs guided gene silencing processes. The structural investigations have provided insights into details and functional mechanisms of the four major domains within AGO2. As a multifunction player, AGO2 has been revealed involved in tumorgenesis through miRNAs-dependent or independent ways. And nowadays, AGO2 has also been more importantly found ectopically over-expressed in carcinomas and closely associated with aspects of cancers in means of interacting with well-known tumor factors. Here, we provide a review on structural insights, functional mechanisms, novel roles and relationship with carcinomas of AGO2.

The Combination of Dendritic Cells-cytotoxic T Lymphocytes/cytokine-induced Killer (DC-CTL/CIK) Therapy Exerts Immune and Clinical Responses in Patients with Malignant Tumors

Experimental Hematology & Oncology. 2015  |  Pubmed ID: 26561538

The clinical trials using immunotherapy have been performed for the treatment of variety of malignant tumors. However, large-scale meta-analysis of combined DC-CTL/CIK therapy on immune and clinical response in patients has not been well studied yet. The purpose of this study is to investigate the role of DC-CTL/CIK therapy and evaluate the changes of immune indicators and tumor serological markers both at an individual level and at a system level, which is an important basis for immunotherapy as well as prognosis estimation.

Alterations in Mitochondrial Dynamics Induced by Tebufenpyrad and Pyridaben in a Dopaminergic Neuronal Cell Culture Model

Neurotoxicology. Mar, 2016  |  Pubmed ID: 26141520

Tebufenpyrad and pyridaben are two agro-chemically important acaricides that function like the known mitochondrial toxicant rotenone. Although these two compounds have been commonly used to kill populations of mites and ticks in commercial greenhouses, their neurotoxic profiles remain largely unknown. Therefore, we investigated the effects of these two pesticides on mitochondrial structure and function in an in vitro cell culture model using the Seahorse bioanalyzer and confocal fluorescence imaging. The effects were compared with rotenone. Exposing rat dopaminergic neuronal cells (N27 cells) to tebufenpyrad and pyridaben for 3h induced dose-dependent cell death with an EC50 of 3.98μM and 3.77μM, respectively. Also, tebufenpyrad and pyridaben (3μM) exposure induced reactive oxygen species (ROS) generation and m-aconitase damage, suggesting that the pesticide toxicity is associated with oxidative damage. Morphometric image analysis with the MitoTracker red fluorescent probe indicated that tebufenpyrad and pyridaben, as well as rotenone, caused abnormalities in mitochondrial morphology, including reduced mitochondrial length and circularity. Functional bioenergetic experiments using the Seahorse XF96 analyzer revealed that tebufenpyrad and pyridaben very rapidly suppressed the basal mitochondrial oxygen consumption rate similar to that of rotenone. Further analysis of bioenergetic curves also revealed dose-dependent decreases in ATP-linked respiration and respiratory capacity. The luminescence-based ATP measurement further confirmed that pesticide-induced mitochondrial inhibition of respiration is accompanied by the loss of cellular ATP. Collectively, our results suggest that exposure to the pesticides tebufenpyrad and pyridaben induces neurotoxicity by rapidly initiating mitochondrial dysfunction and oxidative damage in dopaminergic neuronal cells. Our findings also reveal that monitoring the kinetics of mitochondrial respiration with Seahorse could be used as an early neurotoxicological high-throughput index for assessing the risk that pesticides pose to the dopaminergic neuronal system.

Mitoapocynin Treatment Protects Against Neuroinflammation and Dopaminergic Neurodegeneration in a Preclinical Animal Model of Parkinson's Disease

Journal of Neuroimmune Pharmacology : the Official Journal of the Society on NeuroImmune Pharmacology. Jun, 2016  |  Pubmed ID: 26838361

Mitochondrial dysfunction, oxidative stress and neuroinflammation have been implicated as key mediators contributing to the progressive degeneration of dopaminergic neurons in Parkinson's disease (PD). Currently, we lack a pharmacological agent that can intervene in all key pathological mechanisms, which would offer better neuroprotective efficacy than a compound that targets a single degenerative mechanism. Herein, we investigated whether mito-apocynin (Mito-Apo), a newly-synthesized and orally available derivative of apocynin that targets mitochondria, protects against oxidative damage, glial-mediated inflammation and nigrostriatal neurodegeneration in cellular and animal models of PD. Mito-Apo treatment in primary mesencephalic cultures significantly attenuated the 1-methyl-4-phenylpyridinium (MPP(+))-induced loss of tyrosine hydroxylase (TH)-positive neuronal cells and neurites. Mito-Apo also diminished MPP(+)-induced increases in glial cell activation and inducible nitric oxide synthase (iNOS) expression. Additionally, Mito-Apo decreased nitrotyrosine (3-NT) and 4-hydroxynonenol (4-HNE) levels in primary mesencephalic cultures. Importantly, we assessed the neuroprotective property of Mito-Apo in the MPTP mouse model of PD, wherein it restored the behavioral performance of MPTP-treated mice. Immunohistological analysis of nigral dopaminergic neurons and monoamine measurement further confirmed the neuroprotective effect of Mito-Apo against MPTP-induced nigrostriatal dopaminergic neuronal loss. Mito-Apo showed excellent brain bioavailability and also markedly attenuated MPTP-induced oxidative markers in the substantia nigra (SN). Furthermore, oral administration of Mito-Apo significantly suppressed MPTP-induced glial cell activation, upregulation of proinflammatory cytokines, iNOS and gp91phox in IBA1-positive cells of SN. Collectively, these results demonstrate that the novel mitochondria-targeted compound Mito-Apo exhibits profound neuroprotective effects in cellular and pre-clinical animal models of PD by attenuating oxidative damage and neuroinflammatory processes.

Protein Kinase Cδ Upregulation in Microglia Drives Neuroinflammatory Responses and Dopaminergic Neurodegeneration in Experimental Models of Parkinson's Disease

Neurobiology of Disease. Sep, 2016  |  Pubmed ID: 27151770

Chronic microglial activation has been linked to the progressive degeneration of the nigrostriatal dopaminergic neurons evidenced in Parkinson's disease (PD) pathogenesis. The exact etiology of PD remains poorly understood. Although both oxidative stress and neuroinflammation are identified as co-contributors in PD pathogenesis, signaling mechanisms underlying neurodegenerative processes have yet to be defined. Indeed, we recently identified that protein kinase C delta (PKCδ) activation is critical for induction of dopaminergic neuronal loss in response to neurotoxic stressors. However, it remains to be defined whether PKCδ activation contributes to immune signaling events driving microglial neurotoxicity. In the present study, we systematically investigated whether PKCδ contributes to the heightened microglial activation response following exposure to major proinflammatory stressors, including α-synuclein, tumor necrosis factor α (TNFα), and lipopolysaccharide (LPS). We report that exposure to the aforementioned inflammatory stressors dramatically upregulated PKCδ with a concomitant increase in its kinase activity and nuclear translocation in both BV-2 microglial cells and primary microglia. Importantly, we also observed a marked upregulation of PKCδ in the microglia of the ventral midbrain region of PD patients when compared to age-matched controls, suggesting a role for microglial PKCδ in neurodegenerative processes. Further, shRNA-mediated knockdown and genetic ablation of PKCδ in primary microglia blunted the microglial proinflammatory response elicited by the inflammogens, including ROS generation, nitric oxide production, and proinflammatory cytokine and chemokine release. Importantly, we found that PKCδ activated NFκB, a key mediator of inflammatory signaling events, after challenge with inflammatory stressors, and that transactivation of NFκB led to translocation of the p65 subunit to the nucleus, IκBα degradation and phosphorylation of p65 at Ser536. Furthermore, both genetic ablation and siRNA-mediated knockdown of PKCδ attenuated NFκB activation, suggesting that PKCδ regulates NFκB activation subsequent to microglial exposure to inflammatory stimuli. To further investigate the pivotal role of PKCδ in microglial activation in vivo, we utilized pre-clinical models of PD. We found that PKCδ deficiency attenuated the proinflammatory response in the mouse substantia nigra, reduced locomotor deficits and recovered mice from sickness behavior in an LPS-induced neuroinflammation model of PD. Likewise, we found that PKCδ knockout mice treated with MPTP displayed a dampened microglial inflammatory response. Moreover, PKCδ knockout mice exhibited reduced susceptibility to the neurotoxin-induced dopaminergic neurodegeneration and associated motor impairments. Taken together, our studies propose a pivotal role for PKCδ in PD pathology, whereby sustained PKCδ activation drives sustained microglial inflammatory responses and concomitant dopaminergic neurotoxicity consequently leading to neurobehavioral deficits. We conclude that inhibiting PKCδ activation may represent a novel therapeutic strategy in PD treatment.

Therapeutic Cancer Vaccines

Advances in Experimental Medicine and Biology. 2016  |  Pubmed ID: 27240458

Cancer is one of the major leading death causes of diseases. Prevention and treatment of cancer is an important way to decrease the incidence of tumorigenesis and prolong patients' lives. Subversive achievements on cancer immunotherapy have recently been paid much attention after many failures in basic and clinical researches. Based on deep analysis of genomics and proteomics of tumor antigens, a variety of cancer vaccines targeting tumor antigens have been tested in preclinical and human clinical trials. Many therapeutic cancer vaccines alone or combination with other conventional treatments for cancer obtained spectacular efficacy, indicating the tremendously potential application in clinic. With the illustration of underlying mechanisms of cancer immune regulation, valid, controllable, and persistent cancer vaccines will play important roles in cancer treatment, survival extension and relapse and cancer prevention. This chapter mainly summarizes the recent progresses and developments on cancer vaccine research and clinical application, thus exploring the existing obstacles in cancer vaccine research and promoting the efficacy of cancer vaccine.

Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease

Parkinson's Disease. 2016  |  Pubmed ID: 27298749

Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P < 0.0001) upregulated ferroportin 1 expression and significantly (P < 0.05) decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P < 0.05) and DNA fragmentation by 29% (P = 0.086) and increased cell viability by 22% (P < 0.05). In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P < 0.05) and intracellular iron by 28% (P < 0.01), indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1.

Prokineticin-2 Upregulation During Neuronal Injury Mediates a Compensatory Protective Response Against Dopaminergic Neuronal Degeneration

Nature Communications. Oct, 2016  |  Pubmed ID: 27703142

Prokineticin-2 (PK2), a recently discovered secreted protein, regulates important physiological functions including olfactory biogenesis and circadian rhythms in the CNS. Interestingly, although PK2 expression is low in the nigral system, its receptors are constitutively expressed on nigrostriatal neurons. Herein, we demonstrate that PK2 expression is highly induced in nigral dopaminergic neurons during early stages of degeneration in multiple models of Parkinson's disease (PD), including PK2 reporter mice and MitoPark mice. Functional studies demonstrate that PK2 promotes mitochondrial biogenesis and activates ERK and Akt survival signalling pathways, thereby driving neuroprotection. Importantly, PK2 overexpression is protective whereas PK2 receptor antagonism exacerbates dopaminergic degeneration in experimental PD. Furthermore, PK2 expression increased in surviving nigral dopaminergic neurons from PD brains, indicating that PK2 upregulation is clinically relevant to human PD. Collectively, our results identify a paradigm for compensatory neuroprotective PK2 signalling in nigral dopaminergic neurons that could have important therapeutic implications for PD.

Role of Neurotoxicants and Traumatic Brain Injury in α-synuclein Protein Misfolding and Aggregation

Brain Research Bulletin. Dec, 2016  |  Pubmed ID: 27993598

Protein misfolding and aggregation are key pathological features of many neurodegenerative diseases including Parkinson's disease (PD) and other forms of human Parkinsonism. PD is a complex and multifaceted disorder whose etiology is not fully understood. However, several lines of evidence support the multiple hit hypothesis that genetic vulnerability and environmental toxicants converge to trigger PD pathology. Alpha-synuclein (α-Syn) aggregation in the brain is an important pathophysiological characteristic of synucleinopathies including PD. Epidemiological and experimental studies have shown that metals and pesticides play a crucial role in α-Syn aggregation leading to the onset of various neurodegenerative diseases including PD. In this review, we will emphasize key findings of several epidemiological as well as experimental studies of metal- and pesticide-induced α-Syn aggregation and neurodegeneration. We will also discuss other factors such as traumatic brain injury and oxidative insult in the context of α-Syn-related neurodegenerative processes.

P73 Gene in Dopaminergic Neurons is Highly Susceptible to Manganese Neurotoxicity

Neurotoxicology. Mar, 2017  |  Pubmed ID: 27107493

Chronic exposure to elevated levels of manganese (Mn) has been linked to a Parkinsonian-like movement disorder, resulting from dysfunction of the extrapyramidal motor system within the basal ganglia. However, the exact cellular and molecular mechanisms of Mn-induced neurotoxicity remain elusive. In this study, we treated C57BL/6J mice with 30mg/kg Mn via oral gavage for 30 days. Interestingly, in nigral tissues of Mn-exposed mice, we found a significant downregulation of the truncated isoform of p73 protein at the N-terminus (ΔNp73). To further determine the functional role of Mn-induced p73 downregulation in Mn neurotoxicity, we examined the interrelationship between the effect of Mn on p73 gene expression and apoptotic cell death in an N27 dopaminergic neuronal model. Consistent with our animal study, 300μM Mn treatment significantly suppressed p73 mRNA expression in N27 dopaminergic cells. We further determined that protein levels of the ΔNp73 isoform was also reduced in Mn-treated N27 cells and primary striatal cultures. Furthermore, overexpression of ΔNp73 conferred modest cellular protection against Mn-induced neurotoxicity. Taken together, our results demonstrate that Mn exposure downregulates p73 gene expression resulting in enhanced susceptibility to apoptotic cell death. Thus, further characterization of the cellular mechanism underlying p73 gene downregulation will improve our understanding of the molecular underpinnings of Mn neurotoxicity.

Activation or Suppression of the Immune Response Mediators in Biliary Tract Cancer (BTC) Patients: a Systematic Review and Meta-analysis

Journal of Cancer. 2017  |  Pubmed ID: 28123600

Background: Infiltration of immune cells and immune microenvironment determine the proliferative activity of the tumor and metastasis. The aim of this study was to analyze the influence of activation or suppression of the immune response mediators on the prognosis of biliary tract cancer (BTC). Methods: We searched Pubmed, Web of Science, Embase and The Cochrane Library for relevant literatures until June 2016. The quality of studies was assessed by QUADAS-2 and NOS tools. Forest and funnel plots and all statistical analyses were generated by using Review Manager 5.3. The bias of included studies was estimated by Egger's test using Meta R package. Results: A total of 2339 patients from 12 studies were finally enrolled in this meta-analysis. Patients with high expression of immune active factors, intraepithelial tumor-infiltrating CD4+ , CD8+, and Foxp3+ T lymphocytes, MHC I, NKG2D, showed a better overall survival (OS) than those with low expression (HR=0.52, 95% CI=0.41-0.67, P<0.00001). On the contrary, the high expression of immune suppressive factors (CD66b+ neutrophils, Neutrophil-lymphocyte ratio, Intratumoral IL-17+ cells and PD-1+/CD8+ TILs) was significantly associated with poor OS (HR=1.79, 95% CI=1.44-2.22, P<0.00001). A further analysis of therapies targeting tumor microenvironment modulation showed that the median progression free survival (PFS) for BTC patients who received adjuvant immunotherapy was longer than those who received surgery or chemotherapy alone, and the estimated pooled mean difference demonstrated a highly significant improvement (MD =2.33; 95% CI: 0.63-4.02, P=0.007). The total effect of PFS and OS was statistically longer in experimental group, compared to patients in control groups, respectively (PFS: RR=1.25; 95% CI: 1.08-1.46, P=0.004; OS: RR=1.16; 95% CI: 1.07-1.27, P=0.0006). In subgroup meta-analysis of studies on 6-, 12- and 18-month PFS and OS, it showed that adjuvant immunotherapy could improve the 6-month PFS (RR=1.23; 95% CI: 1.05-1.44, P=0.009), and 6-month OS (RR=1.17; 95% CI: 1.06-1.30, P=0.002). Conclusions: So given the above issue, our meta-analysis confirmed that the level of immune mediators could be a predicative factor for prognosis of BTC patients, and immunotherapy regimens by modulating the tumor microenvironment was superior for enhancing median PFS, 6-month PFS and OS.

Mito-Apocynin Prevents Mitochondrial Dysfunction, Microglial Activation, Oxidative Damage, and Progressive Neurodegeneration in MitoPark Transgenic Mice

Antioxidants & Redox Signaling. Apr, 2017  |  Pubmed ID: 28375739

Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive motor deficits and degeneration of dopaminergic neurons. Caused by a number of genetic and environmental factors, mitochondrial dysfunction and oxidative stress play a role in neurodegeneration in PD. By selectively knocking out mitochondrial transcription factor A (TFAM) in dopaminergic neurons, the transgenic MitoPark mice recapitulate many signature features of the disease, including progressive motor deficits, neuronal loss, and protein inclusions. In the present study, we evaluated the neuroprotective efficacy of a novel mitochondrially targeted antioxidant, Mito-apocynin, in MitoPark mice and cell culture models of neuroinflammation and mitochondrial dysfunction.

Molecular Mechanisms Underlying Protective Effects of Quercetin Against Mitochondrial Dysfunction and Progressive Dopaminergic Neurodegeneration in Cell Culture and MitoPark Transgenic Mouse Models of Parkinson's Disease

Journal of Neurochemistry. Apr, 2017  |  Pubmed ID: 28376279

Quercetin, one of the major flavonoids in plants, has been recently reported to have neuroprotective effects against neurodegenerative processes. However, since the molecular signaling mechanisms governing these effects are not well clarified, we evaluated quercetin's effect on the neuroprotective signaling events in dopaminergic neuronal models and further tested its efficacy in the MitoPark transgenic mouse model of Parkinson's disease (PD). Western blotting analysis revealed that quercetin significantly induced the activation of two major cell survival kinases, protein kinase D1 (PKD1) and Akt in MN9D dopaminergic neuronal cells. Furthermore, pharmacological inhibition or siRNA knockdown of PKD1 blocked the activation of Akt, suggesting that PKD1 acts as an upstream regulator of Akt in quercetin-mediated neuroprotective signaling. Quercetin also enhanced CREB phosphorylation and expression of the CREB target gene BDNF. Results from qRT-PCR, Western blot analysis, mtDNA content analysis, and MitoTracker assay experiments revealed that quercetin augmented mitochondrial biogenesis. Quercetin also increased mitochondrial bioenergetics capacity and protected MN9D cells against 6-OHDA-induced neurotoxicity. To further evaluate the neuroprotective efficacy of quercetin against the mitochondrial dysfunction underlying PD, we used the progressive dopaminergic neurodegenerative MitoPark transgenic mouse model of PD. Oral administration of quercetin significantly reversed behavioral deficits, striatal dopamine depletion, and TH neuronal cell loss in MitoPark mice. Together, our findings demonstrate that quercetin activates PKD1-Akt cell survival signaling axis and suggest that further exploration of quercetin as a promising neuroprotective agent for treating PD may offer clinical benefits. This article is protected by copyright. All rights reserved.

Waiting
simple hit counter