坏死、 凋亡及自噬性细胞死亡是细胞可以死了,和这些机制可以诱导不同的刺激,如细胞损伤、 营养水平较低或信号蛋白的所有方式。而坏死被认为是一种偶然或意外的细胞死亡形式,细胞凋亡和细胞自噬的既编程和”计划”由细胞存在的证据。
在这个介绍性视频中,朱庇特强调有关的细胞死亡,包括最近的工作做在帮助识别基因参与细胞凋亡的蠕虫的关键发现。然后,我们探索的科学家研究细胞死亡,其中一些看看不同死亡通路和他们互动提问。最后,讨论了几种方法来评估细胞死亡,而且我们注意到今天的研究人员正在如何应用这些技术在他们的实验。
矛盾的是,细胞死亡可以帮助塑造有机体的生活。就像任何整个有机体,细胞可以由于老化,因意外伤害造成死亡或后病原浸润细胞可以牺牲本身来防止感染蔓延。在这些情况下,细胞可以按照不同的死亡通路像细胞凋亡、 细胞自噬或坏死。所有这些类型显示特定的形态特征。细胞凋亡或程序性的细胞死亡导致膜”起泡”和核碎裂。自噬作用,也调节,导致封闭细胞成分的大液泡的形成。最后,坏死,是”意外”或偶然,结束在细胞裂解。
这个视频会讨论导致这些通路鉴定的重要发现,探索研究人员仍然在问关于细胞死亡的问题,讨论他们用来回答他们,和最后审查几个示例实验工具。
首先,让我们来回顾一些有助于破译不同细胞死亡通路的关键人员。
现代术语用来描述这些路径可以追溯到古希腊医生希波克拉底。他用词凋亡,意思”脱落”来描述骨”切碎”后观察到骨折。来到现代的时代,”坏死”的第一明显提及发生在 1859 年,当鲁道夫 • 魏尔啸 — — 在他汇编呼吁细胞病理学— — 用这个词来描述”先进的组织破裂”。
随着显微镜和组织学未来十年的进步,1877 年卡尔 · 维格和朱利叶斯 · 科恩海姆得以研究在细胞水平的坏死。他们提供洞察与死,如细胞核消失这类型相关联的形态学特征。
近 70 年后,基督教德 · 迪发现”自噬”的过程中,细胞成分是吞没,分列称为噬,保险丝与另一种类型的细胞器的膜结合细胞器 — — 溶酶体 — — 进一步摧毁它们的内容。我们现在知道,自噬实际上的双重作用的单元格中,促进生存或诱导死亡。
1972 年,约翰 · 克尔、 A.R.柯里和安德鲁 · 怀利观察到另一种类型的细胞死亡与奇特的形态。自这一进程涉及件”脱落”的死细胞,他们给了它古老的希腊名字凋亡。以后,细胞凋亡在 1977 年,当 H.R.霍维茨和约翰正在研究线虫发展被认定为”程序性细胞死亡”的一种形式。他们注意到特定的单元格会在同一时间在不同的蠕虫进行细胞凋亡。
这早就在开发过程中发生的因为它暗示基因可指导细胞凋亡。霍维茨的集团在 20 世纪 80 年代,当他们观察到在某些土木工程署或“线虫死亡”基因突变的细胞没有死这些蠕虫病毒的发展过程中证实了这一假说。后来,霍维茨显示ced 3基因编码蛋白降解酶,称为半胱氨酸蛋白酶。现在,我们知道有几个半胱氨酸蛋白酶,它们在细胞死亡中发挥着重大作用。
这些细胞死亡领域的进展打开为研究人员探索新的道路。让我们来看看其中的一些。
总是有兴趣找出是什么因素触发细胞死亡。来识别它们,研究人员是目前暴露辐射,化学物质,细胞信号分子,然后寻找变化的程度或死亡的类型。
其他科学家们感兴趣阐明所涉及的每个细胞死亡机制的生化途径。目前,我们知道细胞凋亡如下途径半胱氨酸蛋白酶在哪里的关键酶,而细胞自噬涉及蛋白质是 autophagosome 形成的必要条件。然而,在这些途径,是未知的有组件和研究人员试图找出方法来解释它们。此外,研究人员也正在研究是否细胞死亡通路之间发生的任何”相声”。如果存在串扰,则相同的信号可以因子在细胞凋亡,细胞自噬。
最后,一个热门的研究领域涉及理解为什么某些细胞 — — 像癌症细胞 — — 成为不朽。科学家们不断寻找突变的肿瘤细胞,并评估是否其中任何影响基因编码所涉及的死亡通路因素。
这些都是复杂的问题,但幸运的是研究者还是各种工具及其处置回答这些问题。
台盼蓝法是常用的筛选工具评估复方对细胞死亡。测定方法依赖于一个污点,不能进入活的细胞,因为他们拥有”选择性膜,”但可以轻松地输入死细胞,作为他们的膜都”破裂”。这种测定方法标识细胞死亡,但不能查明特定细胞死亡通路。
因此,科学家们设计了技术,如半胱氨酸蛋白酶活性测定等技术。由于半胱氨酸蛋白酶激活在细胞凋亡过程中,科学家可以添加这些荧光时它们会被激活的半胱氨酸蛋白酶的酶的底物。这有助于在凋亡细胞的鉴定。
同样,发生在细胞凋亡过程中的 DNA 碎片可以轻松地使用来标识应用 TUNEL 法检测,依赖于该标记试剂”缺口”末端的 DNA 损伤。由于此方法是相对容易地执行,它是常用的检测领域。
当科学家们想要确定其人口中发生的细胞死亡机制时,他们可以对膜联蛋白 V 和碘化丙啶 (PI) 污渍与流式细胞分析。膜联蛋白 V 将绑定到在膜中的磷脂酰丝氨酸残留而 PI 进入通过破坏细胞膜与 DNA 相关联。通过研究得到的数据,科学家可以分离细胞经历不同死亡通路。
最后,科学家可以使用活细胞成像实时查看的细胞死亡过程。这是一种无所不包的技术,可以用于标识自噬、 坏死或基于独特的形态特征的细胞凋亡。
如您所见,有几种方法来检测细胞死亡,其中一些不具体,其他人,可以帮助识别凋亡细胞和一些,区分不同的途径。
现在,让我们看看科学家如何使用这些技术来学习更多关于细胞死亡。
饮食健康,都有重要的作用,并且可能影响不同组织的细胞死亡。在这在体外实验中,研究人员暴露小鼠神经元对棕榈酸,饱和脂肪酸存在于乳制品和肉,,然后用半胱氨酸蛋白酶测定评价细胞凋亡。他们发现,棕榈酸治疗细胞表现为增加半胱氨酸蛋白酶活性和细胞死亡。
其他的研究者使用这些化验以确定如何药物会产生不同的死亡机制。在这里,荧光标记的肿瘤细胞的转基因老鼠注射阿霉素,一种抗肿瘤药物。科学家们然后成像细胞在活的动物,和通过寻找癌症细胞形态学变化确定药物治疗触发细胞凋亡和坏死。
最后,一些科学家们正在调查是否可以逆转细胞死亡。在这个实验中,研究人员人类癌症细胞暴露于乙醇,并通过各种化验证实这种治疗使他们走上细胞凋亡通路。后洗掉,乙醇,受影响的细胞得以恢复从凋亡过程称为”anastasis”。这提供了洞察如何癌症可以返回后药物治疗。
你刚看了朱庇特的简介细胞死亡通路。这个视频回顾细胞死亡研究的丰富历史 — — 从远古时代到 20 世纪 — — 然后讨论了当前的几个问题。我们也解释了流行的方法,测定细胞死亡,并展示如何使用这些技术,以更好地了解环境、 疾病和细胞死亡之间的连接。一如既往,感谢您收看 !
Paradoxically, cell death helps shape an organism’s life. Just like any whole organism, cells can die as a result of aging, due to accidental injury, or following a pathogen infiltration a cell can sacrifice itself to prevent the spread of infection. Under these circumstances, cells can follow different death pathways like apoptosis, autophagy, or necrosis. All these types display specific morphological characteristics. Apoptosis or programmed cell death leads to membrane “blebbing” and nuclear fragmentation. Autophagy, which is also regulated, leads to formation of large vacuoles enclosing cellular components. Lastly, necrosis, which is “unplanned” or accidental, ends in cell lysis.
This video will discuss important discoveries that led to the identification of these pathways, explore questions that researchers are still asking about cell death, discuss tools they use to answer them, and finally review a few example experiments.
First, let’s review some key researchers who helped to decipher different cell death pathways.
Modern terms used to describe these paths can be traced back to Hippocrates, a physician in ancient Greece. He used the term apoptosis, meaning “falling off,” to describe bone “shredding” observed following a fracture. Coming to the modern era, the first noticeable mention of “necrosis” occurred in 1859, when Rudolf Virchow—in his compilation called Cell Pathology—used this term to describe “advanced tissue breakdown.”
With advances in microscopy and histology over the next decade, in 1877 Carl Weigert and Julius Cohnheim were able to study necrosis at the cellular level. They provided insight into the morphological features associated with this type of death, like the loss of nuclei.
Almost 70 years later, Christian de Duve discovered “autophagy,” a process in which cellular components are engulfed and broken down by membrane-bound organelles called autophagosomes, which fuse with another type of organelle—lysosomes—to further destroy their contents. We now know that autophagy actually plays a dual role in the cell, either facilitating survival or inducing death.
In 1972, John Kerr, A. R. Currie, and Andrew Wyllie observed another type of cell death with peculiar morphology. Since this process involved pieces “falling off” of dead cells, they gave it the ancient Greek name apoptosis. Later, apoptosis was recognized as a form of “programmed cell death” in 1977, when H. R. Horvitz and John Sulston were studying C. elegans development. They noticed that specific cells would undergo apoptosis at the same time in different worms.
Since this was happening early on during development, it hinted that genes may guide apoptosis. This hypothesis was confirmed by Horvitz’s group in the 1980’s, when they observed that cells with mutations in certain ced or “C. elegans death” genes didn’t die during the development of these worms. Later, Horvitz showed that the ced-3 gene encodes a protein-degrading enzyme called a caspase. Now, we know that there are several caspases, and they play major roles in cell death.
These advances in the cell death field opened new roads for researchers to explore. Let’s look at some of them.
There has always been interest in finding out what factors trigger cell death. To identify them, researchers are currently exposing cells to radiation, chemicals, and signaling molecules, and then searching for changes in the degree or type of death.
Other scientists are interested in elucidating the biochemical pathways involved in each cell death mechanism. Currently, we know that apoptosis follows a pathway where caspases are the key enzymes, whereas autophagy involves proteins that are necessary for autophagosome formation. However, there are components in these pathways that are unknown, and researchers are trying to figure out ways to explain them. In addition, researchers are also studying whether any “crosstalk” occurs between cell death pathways. If crosstalk is present, then the same signal can factor in apoptosis, as well as autophagy.
Lastly, a popular area of research deals with understanding why certain cells—like cancer cells—become immortal. Scientists are constantly looking for mutations in cancer cells, and assessing whether any of them affect genes encoding factors involved in death pathways.
These are all complicated questions, but luckily researchers have a variety of tools at their disposal to answer them.
The trypan blue assay is a commonly used screening tool to assess the effect of a compound on cell death. The assay relies on a stain that cannot enter live cells, as they posses “selective membranes,” but can easily enter dead cells as their membranes are “ruptured.” This assay identifies cell death, but fails to pinpoint the specific cell death pathway.
Therefore, scientists have designed techniques like caspase activity assays. Since caspases are activated during apoptosis, scientists can add substrates for these enzymes that fluoresce when they’re activated by caspases. This helps in the identification of apoptotic cells.
Similarly, DNA fragmentation that happens during apoptosis can be easily identified using the TUNEL assay, which relies on reagents that tag the “nicked” ends of damaged DNA. As this method is relatively easy to perform, it is a commonly employed assay in the field.
When scientists want to determine the cell death mechanism occurring in their population, they can pair annexin V and propidium iodide (PI) stains with flow cytometry analysis. Annexin V binds to phosphatidylserine residues in the membrane, whereas PI enters through the damaged membranes to associate with DNA. By studying the resulting data, scientists can separate cells undergoing different death pathways.
Lastly, scientists can use live cell imaging to view the cell death process in real time. This is an all-encompassing technique that can be used to identify autophagic, necrotic, or apoptotic cells based on unique morphological features.
As you’ve seen, there are several methods to detect cell death, some of which are not specific, others that can help identify apoptotic cells, and some that distinguish between different pathways.
Now, let’s see how scientists are using these techniques to study more about cell death.
Diet plays an important role in health, and may affect cell death in different tissues. In this in vitro assay, researchers exposed mouse neurons to palmitic acid, a saturated fatty acid present in both dairy products and meat, and then used a caspase assay to evaluate apoptosis. They discovered that palmitic acid-treated cells demonstrated increased caspase activity and cell death.
Other researchers are using these assays to determine how drugs induce different death mechanisms. Here, transgenic mice with fluorescently labeled cancer cells were injected with doxorubicin, an anti-cancer drug. Scientists then imaged cells in live animals, and by looking for changes in cancer cell morphology, determined that drug treatment triggered both apoptosis and necrosis.
Finally, some scientists are investigating whether cell death can be reversed. In this experiment, researchers exposed human cancer cells to ethanol, and confirmed through a variety of assays that this treatment caused them to embark on the apoptosis pathway. Upon washing off the ethanol, affected cells were able to recover from apoptosis through a process called “anastasis.” This provided insight into how cancers can return following drug treatment.
You’ve just watched JoVE’s introduction to cell death pathways. This video reviewed the rich history of cell death research—from ancient times to the 20th century—and then discussed a few current questions. We also explained popular methods to assay cell death, and demonstrated how these techniques are being used to better understand the connection between environment, disease, and cell death. As always, thanks for watching!