Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

19.11: Heat Capacity: Problem-Solving

TABLE OF
CONTENTS
JoVE Core
Physics

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Education
Heat Capacity: Problem-Solving
 
TRANSCRIPT

19.11: Heat Capacity: Problem-Solving

The heat capacity of a gas is the amount of heat energy required to raise the temperature of a unit mass of gas by one degree Celsius. It is an important thermodynamic property of gases, and its determination is essential in many industrial and scientific applications. Here are the steps to solve problems related to the heat capacities of gases:

Determine the type of gas: The heat capacity of a gas depends on its molecular structure and the degree of freedom of its molecules. Different types of gases have different heat capacities, and their values can be obtained from tables or empirical equations.

Calculate the specific heat capacity: A gas's specific heat capacity (c) is the amount of heat energy required to raise the temperature of a unit mass of the gas by one degree Celsius. It can be calculated using the equation:

Equation1

where M is the molar mass of the gas.

Determine the degree of freedom of the gas: In a dynamic system, the degree of freedom of a gas molecule is the number of directions in which it can move. It depends on the molecular structure and the number of atoms in the molecule. The degree of freedom determines the value of the heat capacity of the gas. For example, a monatomic gas like helium has only three degrees of freedom, whereas a diatomic gas like oxygen has five degrees of freedom.

Calculate the heat capacity at constant volume: The heat capacity at constant volume (CV) is the amount of heat energy required to raise the temperature of one mole of a gas by one degree Celsius at constant volume. It can be calculated using the equation:

Equation2

where d is the degree of freedom of the gas and R is the gas constant.

Calculate the heat capacity at constant pressure: A gas's heat capacity at constant pressure (CP) is the amount of heat energy required to raise the temperature of one mole of the gas by one degree Celsius at constant pressure. It can be calculated using the equation:

Equation3

Finally, determining the heat capacities of gases requires a combination of experimental measurements, empirical equations, and thermodynamic calculations. The values of the heat capacities depend on the molecular structure and the degree of freedom of the gas. They play a crucial role in many scientific and engineering applications.


Suggested Reading

Tags

Heat Capacity Gas Thermodynamic Property Industrial Applications Scientific Applications Molecular Structure Degree Of Freedom Specific Heat Capacity Molar Mass Dynamic System Directions Of Movement Monatomic Gas Diatomic Gas Heat Capacity At Constant Volume

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter