Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

23.13: Divergence and Curl of Electric Field

TABLE OF
CONTENTS
JoVE Core
Physics

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Education
Divergence and Curl of Electric Field
 
TRANSCRIPT

23.13: Divergence and Curl of Electric Field

The divergence of a vector is a measure of how much the vector spreads out (diverges) from a point. For example, an electric field vector diverges from the positive charge and converges at the negative charge. The divergence of an electric field is derived using Gauss's law and is equal to the charge density divided by the permittivity of space. Mathematically, it is expressed as

Equation1

If the divergence of an electric field is zero at a given point, the charge density at that point is also zero. The expression defines the sources of the electric field intensity and hence provides a method to calculate the electric field intensity.

The curl of a vector is a measure of how much the vector swirls around the point of observation. For static charges, the electric field lines do not circulate back on themselves; therefore, the curl of the electric field is zero. This can be expressed mathematically using Stokes' theorem, which states that the surface integral of the curl of an electric field equals the line integral of the electric field along a closed path. Now, since the line integral of the electric field along any closed path is zero, this implies that the curl of the electric field is also zero.

The electrostatic field is irrotational (curl-free) and has non-zero divergence for static charge distribution. This infers that the electrostatic field is generated by a scalar source alone, that is, a charge or a charge density.


Suggested Reading

Tags

Divergence Curl Electric Field Vector Gauss's Law Charge Density Permittivity Of Space Sources Of Electric Field Intensity Curl-free Static Charges Stokes' Theorem Line Integral Closed Path Irrotational Field Scalar Source

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter