Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Alternative Splicing: A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of Exons during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature Messenger rna produce Protein isoforms in which one part of the isoforms is common while the other parts are different.

RNA Splicing

JoVE 10802

The process in which eukaryotic RNA is edited prior to protein translation is called splicing. It removes regions that do not code for proteins and patches the protein-coding regions together. Splicing also allows several protein variants to be expressed from a single gene and plays an essential role in development, tissue differentiation, and adaptation to environmental stress. Errors in splicing can lead to diseases such as cancer. The RNA strand transcribed from eukaryotic DNA is called the primary transcript. The primary transcripts designated to become mRNA are called precursor messenger RNA (pre-mRNA). The pre-mRNA is then processed to form mature mRNA that is suitable for protein translation. Eukaryotic pre-mRNA contains alternating sequences of exons and introns. Exons are nucleotide sequences that code for proteins whereas introns are the non-coding regions. RNA splicing is the process by which introns are removed and exons patched together. Splicing is mediated by the spliceosome—a complex of proteins and RNA called small nuclear ribonucleoproteins (snRNPs). The spliceosome recognizes specific nucleotide sequences at exon/intron boundaries. First, it binds to a GU-containing sequence at the 5’ end of the intron and to a branch point sequence containing an A towards the 3’ end of the intron. In a number of carefully-orches

 Core: Gene Expression

What is Gene Expression?

JoVE 10797

Gene expression is the process in which DNA (i.e., a gene) directs the synthesis of functional products, such as proteins. Cells can regulate gene expression at various stages. It allows organisms to generate different cell types and enables cells to adapt to internal and external factors.

A gene is a stretch of DNA that serves as the blueprint for functional RNAs and proteins. Since DNA is made up of nucleotides and proteins consist of amino acids, a mediator is required to convert the information that is encoded in DNA into proteins. This mediator is the messenger RNA (mRNA). mRNA copies the blueprint from DNA by a process called transcription. In eukaryotes, transcription takes place in the nucleus by complementary base-pairing with the DNA template. The mRNA is then processed and transported into the cytoplasm where it serves as a template for protein synthesis during translation. In prokaryotes, which lack a nucleus, the processes of transcription and translation occur at the same location and almost simultaneously since the newly-formed mRNA is susceptible to rapid degradation. Every cell of an organism contains the same DNA, and consequently the same set of genes. However, not all genes in a cell are “turned on” or use to synthesize proteins. A gene is said to be “expressed” when the protein it encodes is produced by the cel

 Core: Gene Expression

Organization of Genes

JoVE 10786

The genomes of eukaryotes can be structured in several functional categories. A strand of DNA is comprised of genes and intergenic regions. Genes themselves consist of protein-coding exons and non-coding introns. Introns are excised once the sequence is transcribed to mRNA, leaving only exons to code for proteins.

In eukaryotic genomes, genes are separated by large stretches of DNA that do not code for proteins. However, these intergenic regions carry important elements that regulate gene activity, for instance, the promoter where transcription starts, and enhancers and silencers that fine-tune gene expression. Sometimes these binding sites can be located far away from the associated gene. As researchers investigated the process of gene transcription in eukaryotes, they realized that the final mRNA that codes for a protein is shorter than the DNA it is derived from. This difference in length is due to a process called splicing. Once pre-mRNA has been transcribed from DNA in the nucleus, splicing immediately removes introns and joins exons together. The result is protein-coding mRNA that moves to the cytoplasm and is translated into protein. One of the largest human genes, DMD, is over two million base pairs long. This gene encodes the muscle protein dystrophin. Mutations in DMD cause muscular dystrophy, a disorder characteri

 Core: DNA Structure and Function

An Overview of Gene Expression

JoVE 5546

Gene expression is the complex process where a cell uses its genetic information to make functional products. This process is regulated at multiple stages, and any misregulation could lead to diseases such as cancer.

This video highlights important historical discoveries relating to gene expression, including the…

 Genetics

Using RNA-sequencing to Detect Novel Splice Variants Related to Drug Resistance in In Vitro Cancer Models

1Department of Pediatric Oncology/Hematology, VU University Medical Center, 2Department of Hematology, VU University Medical Center, 3Department of Medical Oncology, VU University Medical Center, 4Department of Clinical Genetics, VU University Medical Center, 5Division of General and Transplant Surgery, Azienda Ospedaliera Universitaria Pisana, Universita’ di Pisa, 6Amsterdam Immunology and Rheumatology Center, VU University Medical Center, 7Princess Máxima Center for Pediatric Oncology, 8Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, 9Institute of Nanoscience and Nanotechnology, CNR-Nano

JoVE 54714

 Cancer Research

Real-time Analysis of Transcription Factor Binding, Transcription, Translation, and Turnover to Display Global Events During Cellular Activation

1Institute for Diabetes and Obesity (IDO), German Center for Diabetes Research (DZD), Helmholtz Zentrum München, 2Institute for Informatics, Ludwig-Maximilians-Universität München, 3Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Penzberg

JoVE 56752

 Genetics

Comprehensive Workflow for the Genome-wide Identification and Expression Meta-analysis of the ATL E3 Ubiquitin Ligase Gene Family in Grapevine

1Dipartimento di Biotecnologie, Università degli Studi di Verona, 2Ecology and Evolution, Research School of Biology, The Australian National University, 3Dipartimento di Agraria, SACEG, Università degli Studi di Sassari

JoVE 56626

 Biology

A Fast and Quantitative Method for Post-translational Modification and Variant Enabled Mapping of Peptides to Genomes

1Department of Neurobiology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 2Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, 3Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, 4Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research

JoVE 57633

 Genetics

Use of a Piglet Model for the Study of Anesthetic-induced Developmental Neurotoxicity (AIDN): A Translational Neuroscience Approach

1Department of Anesthesiology, Ohio State University College of Medicine, 2Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, 3Department of Anaesthesia and Critical Care Medicine, University of Toronto, 4Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, 5Department of Pathology and Anatomy, Ohio State University College of Medicine, 6Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital

JoVE 55193

 Medicine

Overexpressing Long Noncoding RNAs Using Gene-activating CRISPR

1Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, 2Vatche and Tamar Manoukian Division of Digestive Diseases, Integrated Molecular Technologies (IMT) Core, Department of Medicine, University of California, Los Angeles, 3Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles

JoVE 59233

 Genetics

Quantitative Cell Biology of Neurodegeneration in Drosophila Through Unbiased Analysis of Fluorescently Tagged Proteins Using ImageJ

1Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 2School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University

JoVE 58041

 Neuroscience

Detection of Human Immunodeficiency Virus Type 1 (HIV-1) Antisense Protein (ASP) RNA Transcripts in Patients by Strand-Specific RT-PCR

1Division of Immunology and Allergy, Lausanne University Hospital, 2Department of Fundamental Neuroscience, University of Lausanne, 3Department of Biochemistry, Erasmus Medical Center, 4Theoretical Biology and Biophysics Group, Los Alamos National Laboratories, 5Department of Biochemistry, University of Lausanne

Video Coming Soon

JoVE 60511

 JoVE In-Press

A Robust Polymerase Chain Reaction-based Assay for Quantifying Cytosine-guanine-guanine Trinucleotide Repeats in Fragile X Mental Retardation-1 Gene

1Central Laboratory, Bao'an Maternity and Child Health Hospital, Jinan University, 2Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, 3Shenzhen Research Institute, The Chinese University of Hong Kong, 4Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, 5PerkinElmer Diagnostics, 6Department of Obstetrics and Gynecology, Bao'an Maternity and Child Health Hospital, Jinan University, 7Maternal-Fetal Medicine Institute, Bao'an Maternity and Child Health Hospital, Jinan University

JoVE 59963

 Genetics

Quantitative Analysis of Alternative Pre-mRNA Splicing in Mouse Brain Sections Using RNA In Situ Hybridization Assay

1Department of Genetics and Genome Sciences, Case Western Reserve University, 2Department of Endocrinology, Dongfang Hospital of Beijing University of Chinese Medicine, 3Case Comprehensive Cancer Center, Case Western Reserve University, 4Center for RNA Science and Therapeutics, Case Western Reserve University

JoVE 57889

 Genetics

Structure-function Studies in Mouse Embryonic Stem Cells Using Recombinase-mediated Cassette Exchange

1Department of Biomedical Molecular Biology, Ghent University, 2Inflammation Research Center, VIB, 3Center for Medical Genetics, Ghent University Hospital, 4Cancer Research Institute Ghent (CRIG), 5Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, 6Helmholtz Center for Infection Research, 7Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University and Alfred Health Alfred Centre

JoVE 55575

 Developmental Biology
12
More Results...