Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Engineering: The practical application of physical, mechanical, and mathematical principles. (Stedman, 25th ed)
 JoVE Bioengineering

The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering

1Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 2Genetic Engineering and Biotechnology Institute for Postgraduate Studies, Baghdad University, 3Department of Plastic, Hand and Microsurgery, Sana Klinikum Hof GmbH


JoVE 54676

 JoVE Bioengineering

Synthesis of Thermogelling Poly(N-isopropylacrylamide)-graft-chondroitin Sulfate Composites with Alginate Microparticles for Tissue Engineering

1Department of Chemical Engineering, Rowan University, 2Department of Biological Sciences, Rowan University, 3Department of Biomedical Engineering, Drexel University


JoVE 53704

 JoVE Bioengineering

Engineering 3D Cellularized Collagen Gels for Vascular Tissue Regeneration

1Laboratory for Biomaterials and Bioengineering, Department Min-Met-Materials Eng & CHU de Québec Research Center, Canada Research Chair I for the Innovation in Surgery, Laval University, 2NSERC CREATE Program for Regenerative Medicine (NCPRM), Laval University, 3Department Electronics, Information and Bioengineering, Politecnico di Milano, 4Department of Chemical and Materials Engineering, University of Alberta, 5National Institute for Nanotechnology, National Research Council (Canada), 6Department of Chemical and Biochemical Engineering, University of Western Ontario


JoVE 52812

 JoVE In-Press

Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids

1Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 2Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 3Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University

Video Coming Soon

JoVE 55957

 JoVE Genetics

Genetic Engineering of an Unconventional Yeast for Renewable Biofuel and Biochemical Production

1Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 2NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 3Food Science and Chemical Engineering, Singapore Institute of Technology


JoVE 54371

 JoVE Bioengineering

Surgical Retrieval, Isolation and In vitro Expansion of Human Anterior Cruciate Ligament-derived Cells for Tissue Engineering Applications

1Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, 2Division of Orthopaedics and Rehabilitation, Department of Surgery, Southern Illinois University School of Medicine, 3Department of Electrical and Computer Engineering, Biomedical Engineering Program, Southern Illinois University Carbondale, 4University of Illinois at Springfield


JoVE 51597

 Science Education: Essentials of Genetics

An Overview of Genetic Engineering

JoVE Science Education

Genetic engineering – the process of purposefully altering an organism’s DNA – has been used to create powerful research tools and model organisms, and has also seen many agricultural applications. However, in order to engineer traits to tackle complex agricultural problems such as stress tolerance, or to realize the promise of gene therapy for treating human diseases, further advances in the field are still needed. Important considerations include the safe and efficient delivery of genetic constructs into cells or organisms, and the establishment of the desired modification in an organism’s genome with the least “off-target” effects. JoVE’s Overview of Genetic Engineering will present a history of the field, highlighting the discoveries that confirmed DNA as the genetic material and led to the development of tools to modify DNA. Key questions that must be answered in order to improve the process of genetic engineering will then be introduced, along with various tools used by genetic engineers. Finally, we will survey several applications demonstrating the types of experimental questions and strategies in the field today.

 Science Education: Essentials of Developmental Biology

Genetic Engineering of Model Organisms

JoVE Science Education

Transgenesis, or the use of genetic engineering to alter gene expression, is widely used in the field of developmental biology. Scientists use a number of approaches to alter the function of genes to understand their roles in developmental processes. This includes replacement of a gene with a nonfunctional copy, or adding a visualizable tag to a gene that allows the resultant fusion protein to be tracked throughout development. In this video, the viewers will learn about the principles behind transgenesis, as well as the basic steps for introducing genetic constructs into an animal and targeting genes of interest. This is followed by the discussion of a protocol to create knockout mice. Lastly, some specific applications of transgenic technologies in the field of developmental biology will be reviewed.

 JoVE Bioengineering

Density Gradient Multilayered Polymerization (DGMP): A Novel Technique for Creating Multi-compartment, Customizable Scaffolds for Tissue Engineering

1Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 2Biomedical Sciences Program, University of California, San Diego, 3Department of Bioengineering, University of California, San Diego


JoVE 50018

 JoVE Bioengineering

Engineering Adherent Bacteria by Creating a Single Synthetic Curli Operon

1UMR CNRS 5557 Ecologie Microbienne, Université Lyon 1, Université de Lyon, 2Département Biosciences, INSA de Lyon, Université de Lyon, 3INSERM U758, Ecole Normale Supérieure de Lyon, Université de Lyon, 4Laboratoire de Génie Civil et Ingénierie Environnementale, INSA de Lyon, Université de Lyon


JoVE 4176

12345678942
More Results...
Waiting
simple hit counter