Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Molecular Structure: The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.

From Constructs to Crystals – Towards Structure Determination of β-barrel Outer Membrane Proteins

1Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, 2National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 3National Institute of General Medical Sciences (NIGMS), National Institutes of Health

JoVE 53245


 Chemistry

3D Printing of Biomolecular Models for Research and Pedagogy

1Department of Physics, Brandeis University, 2Bioinformatics and Computational Biosciences Branch (BCBB), NIH/NIAID/OD/OSMO/OCICB, 3Library/LTS/MakerLab, Brandeis University, 4Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, 5Winship Cancer Institute, Emory University School of Medicine

JoVE 55427


 Engineering

Studying Soft-matter and Biological Systems over a Wide Length-scale from Nanometer and Micrometer Sizes at the Small-angle Neutron Diffractometer KWS-2

1Jülich Centre for Neutron Science Outstation at MLZ, Forschungszentrum Jülich GmbH, 2Department of Chemistry, Louisiana State University, 3Jülich Centre for Neutron Science JCNS-1 & Institute of Complex Systems ICS-1, Forschungszentrum Jülich GmbH, 4Central Institute of Engineering, Electronics and Analytics — Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, 5Central Institute of Engineering, Electronics and Analytics — Engineering and Technology (ZEA-1), Forschungszentrum Jülich GmbH

JoVE 54639


 Bioengineering

Creating a Structurally Realistic Finite Element Geometric Model of a Cardiomyocyte to Study the Role of Cellular Architecture in Cardiomyocyte Systems Biology

1Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, University of Melbourne, 2Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, 3Department of Biomedical Engineering, University of Melbourne, 4Department of Engineering Science, University of Auckland, 5Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 6School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 7School of Mathematics and Statistics, Faculty of Science, University of Melbourne, 8ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, 9Living Systems Institute, University of Exeter

Video Coming Soon

JoVE 56817


 JoVE In-Press

Measurements of Long-range Electronic Correlations During Femtosecond Diffraction Experiments Performed on Nanocrystals of Buckminsterfullerene

1ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, 2Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, 3Department of Physics, Imperial College London, 4Florey Institute of Neuroscience and Mental Health, 5Science and Engineering Faculty, Queensland University of Technology, 6Swinburne University of Technology, 7Department of Engineering Science, University of Oxford, 8Brookhaven National Laboratory, 9Linac Coherent Light Source, SLAC National Accelerator Laboratory, 10BioXFEL Science and Technology Center, 11Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 12Australian Synchrotron

JoVE 56296


 Chemistry

Nanomanipulation of Single RNA Molecules by Optical Tweezers

1Nanoscale Engineering Graduate Program, College of Nanoscale Science and Engineering, University at Albany, State University of New York, 2Nanoscale Science Undergraduate Program, College of Nanoscale Science and Engineering, University at Albany, State University of New York, 3Nanobioscience Constellation, College of Nanoscale Science and Engineering, University at Albany, State University of New York, 4The RNA Institute, University at Albany, State University of New York, 5Department of Biological Sciences, University at Albany, State University of New York

JoVE 51542


 Bioengineering

Nucleophilic Substitution

JoVE 10465

Source: Vy M. Dong and Daniel Kim, Department of Chemistry, University of California, Irvine, CA

Nucleophilic substitution reactions are among the most fundamental topics covered in organic chemistry. A nucleophilic substitution reaction is one where a nucleophile (electron-rich Lewis base) replaces a leaving group from a carbon atom.

SN1 (S = Substitution, N = Nucleophilic, 1 = first-order kinetics) SN2 (S = Substitution, N = Nucleophilic, 2 = second-order kinetics) This video will help to visualize the subtle differences between an SN1 and SN2 reaction and what factors help to speed up each type of nucleophilic substitution reaction. The first section will focus on reactions that will help to better understand and learn about nucleophilic substitution reactions. The second section will focus on a real-world example of a substitution reaction.


 Organic Chemistry II

Multi-target Parallel Processing Approach for Gene-to-structure Determination of the Influenza Polymerase PB2 Subunit

1Protein Crystallization Lab, Emerald Bio, 2Molecular Biology Lab, Emerald Bio, 3Scientific Sales Representative, Emerald Bio, 4Group Leader II, Emerald Bio, 5Group Leader I, Emerald Bio, 6Chair of Advisory Board, Emerald Bio, 7Director of Multi-Target Services, Emerald Bio, 8Senior Project Leader, Emerald Bio, 9Project Leader II & SSGCID Site Manager, Emerald Bio

JoVE 4225


 Immunology and Infection

Experimental and Imaging Techniques for Examining Fibrin Clot Structures in Normal and Diseased States

1Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, 2Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 3George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology

JoVE 52019


 Medicine

Structure Of Ferrocene

JoVE 10347

Source: Tamara M. Powers, Department of Chemistry, Texas A&M University 

In 1951, Kealy and Pauson reported to Nature the synthesis of a new organometallic compound, ferrocene.1 In their original report, Pauson suggested a structure for ferrocene in which the iron is singly bonded (sigma bonds) to one carbon atom of each cyclopentadiene ligand (Figure 1, Structure I).1,2,3 This initial report led to wide-spread interest in the structure of ferrocene, and many leading scientists participated in the structure elucidation of this interesting new molecule. Wilkinson and Woodward were quick to suggest an alternative formulization where the iron is "sandwiched" between two cyclopentadiene ligands, with equal binding to all 10 carbon atoms (Figure 1, Structure II).4 Here, we will synthesize ferrocene and decide, based on experimental data (IR and 1H NMR), which of these structures is observed. In addition, we will study the electrochemistry of ferrocene by collecting a cyclic voltammogram. In the course of this experiment, we introduce the 18-electron rule and discuss valence electron counting for transitio


 Inorganic Chemistry

Structure-function Studies in Mouse Embryonic Stem Cells Using Recombinase-mediated Cassette Exchange

1Department of Biomedical Molecular Biology, Ghent University, 2Inflammation Research Center, VIB, 3Center for Medical Genetics, Ghent University Hospital, 4Cancer Research Institute Ghent (CRIG), 5Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, 6Helmholtz Center for Infection Research, 7Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University and Alfred Health Alfred Centre

JoVE 55575


 Developmental Biology

123456789113
More Results...