Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Neuromuscular Diseases: A general term encompassing lower Motor neuron disease; Peripheral nervous system diseases; and certain Muscular diseases. Manifestations include Muscle weakness; Fasciculation; muscle Atrophy; Spasm; Myokymia; Muscle hypertonia, myalgias, and Muscle hypotonia.

Quantitative Magnetic Resonance Imaging of Skeletal Muscle Disease

1Institute of Imaging Science, Vanderbilt University, 2Department of Radiology and Radiological Sciences, Vanderbilt University, 3Department of Biomedical Engineering, Vanderbilt University, 4Department of Molecular Physiology and Biophysics, Vanderbilt University, 5Department of Physical Medicine and Rehabilitation, Vanderbilt University, 6Department of Physics and Astronomy, Vanderbilt University

JoVE 52352


 Medicine

Analysis of Zebrafish Larvae Skeletal Muscle Integrity with Evans Blue Dye

1Program in Genetics & Genome Biology, The Hospital for Sick Children, 2Department of Molecular Genetics, The University of Toronto, 3Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 4Departments of Pediatrics and Neurology, University of Michigan

JoVE 53183


 Developmental Biology

Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles

1Department of Neurology, The Ohio State University Wexner Medical Center, 2Department of Physical Medicine and Rehabilitation, The Ohio State University, 3Department of Neuroscience, The Ohio State University Wexner Medical Center, 4Department of Biochemistry and Pharmacology, The Ohio State University Wexner Medical Center

JoVE 52899


 Behavior

Analyzing Synaptic Modulation of Drosophila melanogaster Photoreceptors after Exposure to Prolonged Light

1Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, 2Brain Research Institute, Niigata University, 3Image and Data Analysis Facility, German Center for Neurodegenerative Diseases (DZNE), 4Graduate School of Life Science and Technology, Tokyo Institute of Technology (Titech), 5Dendrite Differentiation, German Center for Neurodegenerative Diseases (DZNE)

JoVE 55176


 Neuroscience

An Objective and Child-friendly Assessment of Arm Function by Using a 3-D Sensor

1Data Science, Roche Pharmaceutical Research and Early Development Informatics, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., 2Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., 3Biomarker Experimental Medicine, Neuroscience, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., 4Division of Neuropediatrics, University of Basel Children's Hospital, 5Department of Neurology, University of Basel Hospital, 6Translational Medicine, Neuroscience and Rare Diseases, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd.

Video Coming Soon

JoVE 57014


 JoVE In-Press

Sequential Photo-bleaching to Delineate Single Schwann Cells at the Neuromuscular Junction

1Lehrstuhl für Biomolekulare Sensoren, Technische Universität München, 2Center for Integrated Protein Science (Munich) at the Institute of Neuroscience, Technische Universität München, 3TUM Institute for Advanced Study and German Center for Neurodegenerative Diseases, Technische Universität München, 4Munich Cluster for Systems Neurology (SyNergy), Technische Universität München

JoVE 4460


 Neuroscience

Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers

1Department of Orthopaedic Surgery, University of Michigan Medical School, 2Department of Molecular & Integrative Physiology, University of Michigan Medical School, 3Department of Biomedical Engineering, University of Michigan Medical School, 4Department of Surgery, Section of Plastic Surgery, University of Michigan Medical School

JoVE 52695


 Bioengineering

Motor Exam II

JoVE 10095

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

There are two main types of reflexes that are tested on a neurological examination: stretch (or deep tendon reflexes) and superficial reflexes. A deep tendon reflex (DTR) results from the stimulation of a stretch-sensitive afferent from a neuromuscular spindle, which, via a single synapse, stimulates a motor nerve leading to a muscle contraction. DTRs are increased in chronic upper motor neuron lesions (lesions of the pyramidal tract) and decreased in lower motor neuron lesions and nerve and muscle disorders. There is a wide variation of responses and reflexes graded from 0 to 4+ (Table 1). DTRs are commonly tested to help localize neurologic disorders. A common method of recording findings during the DTR examination is using a stick figure diagram. The DTR test can help distinguish upper and lower motor neuron problems, and can assist in localizing nerve root compression as well. Although the DTR of nearly any skeletal muscle could be tested, the reflexes that are routinely tested are: brachioradialis, biceps, triceps, patellar, and Achilles (Table 2). Superficial reflexes are segmental ref


 Physical Examinations III

Non-invasive Assessments of Subjective and Objective Recovery Characteristics Following an Exhaustive Jump Protocol

1Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, 2University College Physiotherapy "Thim van der Laan", 3Department of Movement and Sport Sciences, Vrije Universiteit Brussel, 4Faculty of Medicine and Health Sciences, University of Antwerp

JoVE 55612


 Medicine

Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle

1Davis Heart and Lung Research Institute, The Ohio State University, 2Laboratory of Clinical Investigation, National Institute on Aging, 3Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, 4Department of Human Sciences, Human Nutrition, The Ohio State University, 5Division of Endocrinology and Diabetes, Department of Pediatrics, University of Pennsylvania

JoVE 54977


 Medicine

TIRFM and pH-sensitive GFP-probes to Evaluate Neurotransmitter Vesicle Dynamics in SH-SY5Y Neuroblastoma Cells: Cell Imaging and Data Analysis

1Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 2San Raffaele Scientific Institute and Vita-Salute University, 3CEND Center of Excellence in Neurodegenerative Diseases, Università degli Studi di Milano

JoVE 52267


 Neuroscience

Isolation and Immortalization of Patient-derived Cell Lines from Muscle Biopsy for Disease Modeling

1Department of Cell Biology, UT Southwestern Medical Center, 2National Institute of Neurological Disorders and Stroke, National Institute of Health, 3Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 4Division of Genetics and Genomics, Boston Children's Hospital

JoVE 52307


 Medicine

12345678943
More Results...