Summary

近质膜和全球星形胶质细胞内钙动力学测量

Published: April 26, 2009
doi:

Summary

我们描述了如何来衡量膜和全球培养的星形胶质细胞,利用全内反射和epifluorescence显微镜细胞内钙离子动力学附近。

Abstract

大脑含有神经胶质细胞。星形胶质细胞,神经胶质细胞类型,长期被称为神经元提供了一个被动的支撑作用。然而,越来越多的证据表明,星形胶质细胞可能也积极参与脑功能,通过与神经元的功能的相互作用。然而,星形胶质细胞生物学的许多基本方面仍然争议,职责不清和/或实验未开发。其中一个重要的问题是星形胶质细胞内钙瞬变的动态。这是有关的,因为钙是完善作为一项重要的第二信使,因为它已被提出,星形胶质细胞钙升高可以触发从星形胶质细胞释放发射机。然而,还没有任何近质膜钙信号在星形胶质细胞的详细或令人满意的描述。全内反射荧光显微镜(TIRF)是一个强大的工具来分析有关生理信号事件,约100纳米的活细胞质膜内。在这里,我们使用TIRF显微镜和描述如何几乎同时监测到附近的细胞膜和全球细胞内钙的动态。这种方法的进一步完善和系统应用的潜力,以了解星形胶质细胞钙信号的精确细节。一个星形胶质细胞钙动力学的详细了解可能会提供一个基础,了解是否,如何,何时和为什么星形胶质细胞和神经元接受钙依赖性的功能上的相互作用。

Protocol

实验步骤实验过程由两个关键部件,是明智的方式在一个步骤如下所述。 第1部分:准备海马星形胶质细胞的培养简单地说,混合海马星形胶质细胞神经元的文化准备使用一个完善的协议1,2,3。我们优化的过程,产生健康的培养的星形胶质细胞。下面列出的所有程序应在无菌层流罩,如环境进行。 准备…

Discussion

它是行之有效的,星形胶质细胞显示细胞内钙升高。这些自发地发生,可引发神经元的活动,或通过受体激动剂的应用程序激活星形胶质细胞表面的受体11。其中一个重要的和有争议的问题是是否星形胶质细胞内钙升高可触发释放信号分子,激活受体对神经元的11,12。因为有支持和反对这种观点的证据, 海顿7,第13麦卡锡 11实验室在评论强调,这是有争议的。根据我们最近的?…

Acknowledgements

这项工作是支持日本的上原纪念基金会(ES)以及白厅基金会,国立神经疾病与中风和斯坦 – 奥本海默基金会奖(BSK)。

Materials

Material Name Type Company Catalogue Number Comment
VWR® Micro Cover Slips, Round, No. 1 Tool VWR 48380-068  
Poly-D-lysine hydrobromide Reagent Sigma P0899  
Laminin from Engelbreth-Holm-Swarm murine sarcoma basement membrane Reagent Sigma L2020  
Earle’s Balanced Salt Solution (EBSS) (1X), liquid Reagent Invitrogen 14155-063  
Minimum Essential Medium (MEM) (1X), liquid Contains Earle’s salts, but no L-glutamine or phenol red Reagent Invitrogen 51200-038  
Penicillin-Streptomycin liquid Reagent Invitrogen 15140-122  
Sodium pyruvate solution Reagent Sigma S8636  
HEPES solution 1 M Reagent Sigma H0887  
N-2 Supplement (100X), liquid Reagent Invitrogen 17502-048  
Horse Serum, Heat-Inactivated Reagent Invitrogen 26050-088  
PAPAIN-022 Reagent Worthington LK003178  
Neurobasal™ Medium (1X) Liquid without Phenol Red Reagent Invitrogen 12348-017  
B-27 Serum-Free Supplement (50X), liquid Reagent Invitrogen 17504-044  
L-Glutamine-200 mM (100X), liquid Reagent Invitrogen 25030-149  
Cell Strainers Tool BD Biosciences 352350  
BD Falcon Multiwell Flat-Bottom Plates with Lids, Sterile Tool BD Biosciences 353046  
NaCl Reagent Sigma S7653  
KCl Reagent Sigma P3911  
CaCl2 hexahydrate Reagent Sigma 21108  
MgCl2 hexahydrate Reagent Sigma M2670  
HEPES free acid Reagent Sigma H3375  
D-(+)-glucose Reagent Sigma G7528  
Fluo-4, AM 1 mM solution in DMSO Reagent Invitrogen F-14217  
Pluronic® F-127 20% solution in DMSO Reagent Invitrogen P-3000MP  
Immersion Oil TYPE DF Microscope Cargille 16242  
Open chamber for 25 mm round coverslips, 100 μl volume Tool WARNER Instruments 64-0362 (RC-21BDW)  
P-2 platform for Series 20 chambers, non-heater Tool WARNER Instruments 64-0278 (P-2)  
FluoSpheres carboxylate-modified microspheres, 0.1 μm, yellow-green fluorescent (505/515) 2% solids Reagent Invitrogen F8803  

References

  1. Richler, E., Chaumont, S., Shigetomi, E., Sagasti, A., Khakh, B. S. An approach to image activation of transmitter-gated P2X receptors in vitro and in vivo. Nature Methods. 5, 87-93 (2008).
  2. Granseth, B., Odermatt, B., Royle, S. J., Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron. 51, 773-786 (2006).
  3. Nunez, J. Primary culture of hippocampal neurons from P0 newborn rats. J Vis Exp. 19, (2008).
  4. Steyer, J. A., Almers, W. A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol. 2, 268-275 (2001).
  5. Jaiswal, J. K., Fix, M., Takano, T., Nedergaard, M., Simon, S. M. Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci U S A. 104, 14151-14156 (2007).
  6. Araque, A., Carmignoto, G., Haydon, P. G. Dynamic signalling between astrocytes and neurons. Annu Rev Physiol. 63, 795-813 (2001).
  7. Haydon, P. G. GLIA: listening and talking to the synapse. Nat Rev Neurosci. 2, 185-193 (2001).
  8. Bowser, D. N., Khakh, B. S. ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci. 24, 8606-8620 (2004).
  9. Bowser, D. N., Khakh, B. S. Two forms of astrocyte single vesicle exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci U S A. 104, 4212-4217 (2007).
  10. Bowser, D. N., Khakh, B. S. Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol. 129, 485-491 (2007).
  11. Agulhon, C. What is the role of astrocyte calcium in neurophysiology. Neuron. 59, 932-946 (2008).
  12. Barres, B. A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron. 60, 430-440 (2008).
  13. Lee, S. Y., Haydon, P. G. Astrocytic glutamate targets NMDA receptors. J Physiol. 581, 887-888 (2007).
  14. Shigetomi, E., Bowser, D. N., Sofroniew, M. V., Khakh, B. S. Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci. 28, 6659-6663 (2008).
  15. Cahoy, J. D. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 28, 264-278 (2008).

Play Video

Cite This Article
Shigetomi, E., Khakh, B. S. Measuring Near Plasma Membrane and Global Intracellular Calcium Dynamics in Astrocytes. J. Vis. Exp. (26), e1142, doi:10.3791/1142 (2009).

View Video