Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

出生後右心室容積過負荷マウスモデルの確立と確認

Published: June 9, 2023 doi: 10.3791/65372
* These authors contributed equally

Summary

このプロトコルは、腹部動静脈瘻(AVF)のマウスにおける出生後の右心室容積過負荷(VO)モデルの確立と確認を示しており、VOが出生後の心臓の発達にどのように寄与するかを調査するために適用できます。

Abstract

右心室(RV)容積過負荷(VO)は、先天性心疾患の子供によく見られます。発達段階が異なることから、RV心筋は、成人と比較して小児のVOに対して異なる反応を示す可能性がある。本研究は、修正された腹部動静脈瘻を用いたマウスの出生後RVモデルを確立することを目的としています。VOの作成とRVの以下の形態学的および血行動態的変化を確認するために、腹部超音波検査、心エコー検査、および組織化学的染色を3か月間実施しました。その結果、出生後マウスの処置は、許容可能な生存率と瘻孔の成功率を示しました。VOマウスでは、RV腔を肥厚した自由壁で拡大し、手術後2か月以内にストローク量が約30%〜40%増加しました。その後、RV収縮期血圧が上昇し、対応する肺動脈弁逆流が観察され、小肺動脈リモデリングが現れた。結論として、修正動静脈瘻(AVF)手術は、出生後のマウスでRVVOモデルを確立するために実行可能です。瘻孔閉鎖や肺動脈抵抗の上昇の可能性を考慮し、適用前に腹部超音波検査と心エコー検査を行い、モデルの状態を確認する必要があります。

Introduction

右心室(RV)容積過負荷(VO)は、先天性心疾患(CHD)の子供によく見られ、病的な心筋リモデリングと長期予後不良につながります1,2,3RVリモデリングと関連する早期標的介入の深い理解は、CHDの子供で良好な結果を得るために不可欠です。大人と子供の心臓の分子構造、生理学的機能、および刺激に対する応答にはいくつかの違いがあります1,4,5,6例えば、圧力過負荷の影響下では、心筋細胞の増殖が新生児の心臓の主な反応であるのに対し、線維化は成人の心臓で起こります5,6。さらに、成人の心不全の治療に有効な多くの薬は、小児の心不全には治療効果がなく、さらなる損傷を引き起こす可能性さえあります7,8。したがって、成体動物から導き出された結論は、若い動物に直接適用することはできません。

動静脈瘻(AVF)モデルは、さまざまな種の成体動物において、何十年にもわたって慢性心VOおよび対応する心機能障害を誘発するために使用されてきました9,10,11,12,13。しかし、出生後のマウスのモデルについてはほとんど知られていない。これまでの研究では、腹部AVFの作製により、出生後VOマウスモデルの作成に成功しました。出生後の心臓におけるRVの発達経路の変化も実証された14,15,16,17。

根底にある修正された外科的プロセスと現在のモデルの特徴を調査するために、詳細なプロトコルが提示されます。この研究では、モデルを 3 か月間評価します。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

ここで紹介するすべての手順は、ヘルシンキ宣言に概説されている原則に準拠しており、上海小児医療センターの動物福祉および人間研究委員会(SCMC-LAWEC-2023-003)によって承認されました。本研究では、C57BL/6マウスの仔マウス(P7、雄、3-4 g)を使用しました。動物は市販の供給源から入手した( 資料表参照)。仔マウスとその授乳中の母親(仔:母親=6:1)を、22〜2°Cで12時間の明暗サイクルで、特定の病原体を含まない実験室条件下で飼育し±水と栄養食を自由に使用しました。仔犬は、VO群と偽手術(偽)群の2つのグループに無作為に割り付けられました。

1.機器と手術器具の準備

注:すべての材料/機器の商業的詳細は、 材料表に記載されています。

  1. 手術台(発泡プラスチックパネル)、吸入麻酔器、垂直照明と内蔵カメラを備えた顕微鏡、24 MHzトランスデューサーを備えた超音波装置、およびサーモスタット加熱プラットフォーム。
  2. 手術器具(マイクロニードルホルダー、先端の細い鉗子、丸い柄のバンナススプリングハサミなど)を滅菌します。
  3. 次の消耗品を組み立てます:糸付き11-0および9-0外科用縫合針(テーパーポイント)、テープストリップ、5 mLシリンジ針、2-0シルク(外科的固定)、滅菌綿棒、および超音波ジェル。
  4. ベタジン、70%エタノール、通常の滅菌生理食塩水、イソフルラン、アセトアミノフェン、眼科用軟膏、脱毛クリームの試薬があることを確認してください。

2.外科的処置

注:瘻孔手術手順は、前述の方法11に従って修正された。図1に、出生後のマウスにおけるAVF操作の概略 を示す。

  1. 麻酔と拘束
    1. マウスの仔マウスを、2%イソフルラン/酸素が供給された麻酔誘導ボックスに、流量を1 L / minに設定して2分間入れます。結核シリンジを使用してアセトアミノフェン(80 mg / 2.5 mlの0.1 ml PO)を投与します。.
    2. 麻酔を維持するために、1.5%イソフルランを0.8 L / minの流量で鼻から吸い込み、手術台の上で子犬を仰臥位に置きます。.固定された注射針に足を結び、子犬の位置を調整します。角膜の乾燥を防ぐために、子犬の目に眼科用軟膏を塗ります。
    3. 麻酔をかけられた子犬の尻尾をつまんで、痛みの反応を確認します。明らかな体の動きは、適切な麻酔を示しています。
  2. 瘻孔手術
    1. ベタジンと70%エタノールを交互に3回スクラブして皮膚を消毒し、手術部位をドレープします。腹壁と腹膜を下腹部から剣状体下まで切断し、腹腔を完全に露出させ、腹部の臓器を傷つけないように注意します。通常の滅菌生理食塩水を滴下して、外部化された臓器を湿らせます。
    2. 綿棒を使用して消化管と膀胱を手術部位からそっと引き離し、後腹膜の下の垂直腹部大動脈(AA)と下大静脈(IVC)を視覚化します。手術台を反時計回りに90°回転させ、顕微鏡の倍率を調整して、2つの水平血管をはっきりと視覚化します。
    3. 11-0縫合針(直径= 0.07 mm)を使用して、腎動脈から1cm遠位の斜め方向にAAからIVCに瘻孔を穿刺します。IVC内の静脈血と動脈血の腫れと混合に基づいて、瘻孔の作成が成功することを確認します。
    4. 次に、乾いた綿棒で適切な力を加えて15秒間、出血点をすばやく圧縮します。腹腔内の胃、腸、膀胱をできるだけ早く交換して、止血圧迫を促進します。.
    5. 腹壁と腹膜を9-0縫合糸を使用してブランケットステッチで縫合します。麻酔を中止し、子犬に100%酸素を1分間供給します。
  3. 麻酔蘇生法
    1. 子犬を38°Cの加熱プラットフォームに置きます。活力で完全に目覚めた後、子犬を授乳中の母親に戻します。施術時間は約15分です。
      注:本研究では、偽グループは、穿刺ステップを除いて同じ手順を受けます。

3.瘻孔の超音波確認

注:超音波装置の一般的な操作は、以前のレポート1819と同じでした。

  1. 腹部超音波検査による瘻孔の確認
    1. 麻酔導入後(ステップ2.1.1)、マウスをテープストリップで温かいプラットフォームの仰臥位に固定します。次に、マウスを超音波ゲルで心電図(ECG)モニターに接続します。1.5%イソフルランを0.8 L/minの流量で使用して麻酔を維持します。
    2. 胸と腹部の皮膚に脱毛クリームを塗って整えます。数秒後、ぬるま湯に浸した綿の先端でクリームを取り除きます。トランスデューサー(24 MHz)を腹部中央ラインに置き、トランスデューサーマーカーをマウスの頭に回転させます。
    3. プラットホームをマウスの左側または右側に下に移動し、Bモードおよびカラードップラーモードを使用して、血管および血液信号の長軸ビューを視覚化する18,19。AA、IVC、瘻孔の血流速度を測定し、パルス波ドップラーモードでAVF開存性を確認します。
      注:超音波での瘻孔の作成が成功したことは、AAとIVCの間に見える乱流信号によって示されました(図2C)。AVF部位のドップラー血流速度は、AAの収縮期速度が比較的低いのと比較して有意に高かった(図2A、C)。さらに、IVCの正常な流れパターン(図2B)とは対照的に、AVFの近位のIVC血流の拍動波形も瘻孔の形成に成功したことを確認しました(図2D)。
  2. 心エコー検査によるVOの確認
    1. プラットフォームのテールエンド部分を下に動かし、トランスデューサー(24 MHz)を胸に置き、トランスデューサーマーカーをマウスの右肩に回転させます。肺動脈 (PA) の修正された胸骨傍長軸ビューを B モードとカラー ドップラー モードを使用して可視化します。
    2. パルス波ドップラーモードを使用して、速度時間積分(PA-VTI)、PA弁の直径(PAD)、肺動脈加速時間(PAT)、RV排出時間(RVET)など、PAの血流信号を測定します(図2EFおよび図3A、B)。
    3. 3つの連続した測定の平均から超音波パラメータを測定します。次の式20を使用して、RVストローク量(RVSV、mL)およびRV収縮期血圧(RVSP、mmHg)を計算します。
      RVSV [mL] =1/4 × πD2 × VTIPA
      RVSP [mmHg] = -83.7 × PAT/RVET - 指数 + 63.7
      注:超音波測定バイアスを考慮すると、偽群のマウスと比較して、VOマウスのRVSVまたはVTIPA が>15%増加したことがRVのVOと見なされました(図2E、F)。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

3ヶ月以内の生存率とAVF開存性
VO群では合計30匹(75%)のマウス、偽群では19匹(95%)のマウスがAVF手術を生き延びた(図4A)。VO群では、8匹のマウスが手術後1日以内に過度の出血(n = 5)または共食い(n = 3)により死亡したのに対し、2匹のマウスは1か月後に原因不明で死亡した。

生存したVOマウス(n = 30)のうち、術後21匹のマウスで瘻孔の確立に成功したことが超音波で確認され、術後1週間で特許を取得し(P14)、術後2週間まで維持されたことが示されました(P21)。しかし、瘻孔は7匹のマウスでは1ヶ月で、2匹のマウスでは2ヶ月で閉じました。3カ月の追跡調査で持続性AVFを有していたマウスはわずか12匹であった。AVF開存率は、術後1週間、2週間、1か月、2か月でそれぞれ70%、70%、46.7%、40%でした(図4B)。

右心臓の血行動態の変化
血行動態パラメータの3カ月間の追跡調査では、各群のマウスのPADとRVSVの両方が2カ月以内に年齢とともに増加したことが示された(両群ともn=6; 図3B、E、F)。PA-VTIは、偽手術マウスと比較して、術後2週間以内にVO群で有意に高かったが(図3D)、その後は低下し、PATの減少に伴ってPAのフローパターンが変化した(図3A)。VO群のRVSVは、2か月間、偽群のRVSVよりも一貫して高く、約30%〜40%増加しました。RVSPは、手術後2か月の肺逆流で有意に増加しました(図3C、G)。

右心と小肺動脈の形態学的変化
顕微鏡下では、RVはAVF後の偽群と比較して有意に拡大していました(図5A)。組織学的染色では、VOマウスにおいてRVフリーの壁が厚くなり、RV腔が拡大していることが示されました(図5B)。RVの血行動態の変化によると、RVSPは手術後2か月で上昇しました。手術後3カ月のマウス2群の肺組織をヘマトキシリンとエオシン(HE)染色のために無作為に選択し、VO群の小肺動脈の一部に中膜の肥厚、内皮過形成、末梢炎症性細胞浸潤を認めた(図5C)。

Figure 1
1:出生後のマウスにおけるAVF手術の模式図。 (A)手術器具。(B)AVF手術の手順。略語:AVF =動静脈瘻;IVC = 下大静脈;AA = 腹部大動脈。この図の拡大版をご覧になるには、ここをクリックしてください。

Figure 2
図2:超音波によるAVF瘻孔とVOの確認。 (A)AAの通常の拍動流信号(ピーク流速:400 mm/s)。(B)IVCの正常な血流信号。(C)瘻孔での流速の増加(内部に黄色と緑色を帯びた赤色の血流信号は、瘻孔での乱流信号を示し、収縮期流速のピーク:900 mm / s)。(D)流速が増加した瘻孔近傍のIVCの拍動流。(E)手術後1週間のVOマウスのPA-VTIの増加。(F)術後1週間の偽マウスのPA-VTI(青色血流信号はPAの血流を示す)。略語:AVF =動静脈瘻;IVC = 下大静脈;AA = 腹部大動脈;PA = 肺動脈;VTI = 速度-時間積分。ドップラーカラーモードでは、探触子に向かう流れは赤で符号化され、探触子から離れる流れは青で符号化されました。 この図の拡大版をご覧になるには、ここをクリックしてください。

Figure 3
図3:心エコー検査から得られた右心の血行動態測定。 (A)VOマウスの各時点におけるドップラーフローパターンは、PATが徐々に減少していることを示した。 (B)PAパラメータの2次元測定。(C)カラードップラー心エコー検査でのPA逆流。(D-F)術後VOマウスの各時点でのPA-VTI、PAD、RVSVの変化。(g)VO(黒色)および偽(灰色)マウスにおけるRVSPのヒストグラムは、AVF手術後2ヶ月および3ヶ月後にRVSPの増加を示した(6匹のVOマウス;6匹の偽マウス;スチューデントのt検定;*は統計的有意性を表します)。略語:P14 =出生後14日目。P21 = 出生後 21 日目;PVR = 肺動脈弁逆流;RVSP = 右心室収縮期血圧;M =月;W = 週。図Fは、Sunらの許可を得て14から引用したものである。この図の拡大版をご覧になるには、ここをクリックしてください。

Figure 4
図4:AVF手術後のマウスの生存率と瘻孔開存率。 (A)出生後マウスの手術後の生存率(VO群でn=40、偽群でn=20)。(B)VOマウスの瘻孔開存率(n = 30)。 この図の拡大版をご覧になるには、ここをクリックしてください。

Figure 5
図5:右心臓の形態学的変化 。 (A)AVF手術後の各時点でのVOマウスの心臓肥大。(B)手術後のさまざまな時点での心臓HE染色では、RVフリーの壁が厚くなり、RV腔が拡大しました。(C)AVF後のマウスの肺細動脈の病理組織学的変化は、炎症細胞の浸潤を伴う小肺動脈の過形成および肥大を示した。スケールバー:(A)= 5 mm;(b)=2000μm;(C)= 50μm。 略語:W =週;M = 月。 この図の拡大版をご覧になるには、ここをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

以前は、従来のRVVOモデルは弁逆流21を使用して作成されていました。しかし、AVFと比較して、開心弁手術はより高度な技術を必要とする可能性があり、特に出生後のマウスでは、死亡率が有意に高くなる可能性があります。動物実験では、VOの同じ効果がAVF22によって達成されたことが示されているため、この研究では、外傷の少ない修正腹部瘻手術が使用されました。

瘻孔を正常に確立するための手順中に特定の要因が考慮されました。まず、この手順は、気管内挿管と補助換気なしで出生後のマウスで実施されました。そのため、呼吸不全による死亡を避けるためには、仔犬の動態に応じた麻酔設定の迅速な調整が不可欠でした。第二に、子犬の胃と膀胱は、手術中に頻繁に完全な状態でした。したがって、後腹膜血管構造を適切に露出させるには、脆弱な腹部臓器の損傷を避けるために、穏やかで繊細な手術が必要でした。第三に、重度の動脈出血を防ぐためのAAの結紮は、仔犬では実行が困難でした。そのため、穿刺直後の綿棒による止血圧迫が必要でした。その後、後腹膜および腹部臓器が出血部位をさらに圧迫することが可能であった。さらに、過度の圧迫は初期の瘻孔不全に寄与する可能性があることが指摘されました。

成人のRV VOモデルと比較して外傷性が少ないため、出生後のVOマウスは周術期の生存率が比較的高かったが、術後早期の瘻孔の成功率は低かった11,23。重度の出血に加えて、経験の浅い母親の共食いが手術後の子犬の主な死因でした。快適で静かな繁殖環境、腹部の傷のしっかりとした閉鎖、迅速な体温回復、麻酔後の子犬の完全な覚醒は、共食いのリスクを減らす可能性があります。成体AVFマウスモデルに関する以前の研究では、AVFの形成には3つの段階があることがわかっています:術後0〜1日目の急速な血栓症期間、3週間の瘻孔成熟期間、そして最終的に3〜6週間で数匹のマウスで瘻孔の再閉鎖を伴うAVFの作成に成功しました23。この研究では、出生後のマウスの瘻孔開存性曲線も同じ軌跡を示しました(すなわち、瘻孔閉鎖は主に術後1週間以内または4〜8週間の間に発生し、残りの瘻孔は3か月で開いたままでした)。したがって、出生後のAVFマウスでは、手術後2ヶ月以内に腹部超音波検査で瘻孔の開存性を確認することが重要です。

RVSVの増加は、瘻孔の開存性を除いて、RV VOのもう1つの重要な証拠です。現在、心臓カテーテル検査は、低体重の若いマウスでは実施が困難です。その非侵襲性、比較的簡単な操作、および同じマウスの連続モニタリングの利点の恩恵を受けて、高周波トランスデューサーを使用した心エコー検査を適用して、この研究の血行動態の変化を評価しました。RVSVは肺血流VTIによって推定され、出生後のVOマウスでは手術後2か月以内に約30%〜40%増加しました。これらの結果は、このモデルにおけるAVFおよびRVVOの確立に成功したことをさらに証明しました。

慢性VOは、徐々に機能的に肺抵抗が上昇し、最終的にはPA細動脈の血管リモデリングにつながる可能性があります。このプロセスは、左から右へのシャントを伴うCHDの子供によく見られます。ヒツジと子豚を対象とした以前の動物実験では、AVFが肺血管系の構造的および機能的変化につながる可能性があることが証明されています13,24,25。術後2カ月後のその後の追跡調査では、VOマウスにおいてPAT低下、肺動脈弁閉鎖不全症、RVSVの減少傾向を伴ったPAドップラー流の形態異常が観察された。以前に報告されたように、PATは、新生児および小児のRV後負荷を評価するための補完的なパラメータとして使用できます。上記の現象は、VOマウスにおける肺血管抵抗の変化を示唆している可能性がある26,27,28。RVの過負荷または圧力過負荷の上昇を定量化するために、PATとRVETの比率を使用して、成体マウス18でThibaultによって検証された式を使用してRVSPの値を推定し、出生後モデルでAVF手術の2か月後にRVSPが有意に増加したことを実証しました。さらに、VOマウスのいくつかの肺葉における炎症およびPAリモデリングの組織病理学的証拠は、手術後3か月で構造異常をさらに証明しました。したがって、圧力過負荷の影響を排除するために、この出生後マウスRV VOモデルの適用は手術後2か月に制限されることが示唆されました。

要約すると、修正AVF手術は、出生後のマウスでRV VOモデルを確立するための実行可能な技術です。瘻孔閉鎖や肺動脈抵抗の上昇の可能性を考慮し、腹部超音波検査、心エコー検査を行い、適用前にモデルの状態を確認する必要があります。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

申告する利益相反はありません。

Acknowledgments

この研究は、中国国家科学基金会(第82200309号)と寧波の著名な医療チームのイノベーションプロジェクト(第2022020405号)の支援を受けました

Materials

Name Company Catalog Number Comments
70% Ethanol Tiandz,Chia
ACETAMINOPHEN Oral Solution VistaPharm, Inc. Largo, FL 33771, USA NDC 66689-054-01
Anesthesia machine RWD Life Science,China R550IP
Anesthesia mask RWD Life Science,China 68680
C57BL/6 mice Xipu’er-bikai Experimental Animal Co., Ltd (Shanghai, China)
Hair removal cream Veet, France VT-200
Hematoxylin and eosin Kit  Beyotime biotech  C0105M 
Isoflurane RWD Life Science,China R510-22-10
Microscope  Yuyan Instruments, China SM-301
Surgical suture needles NINGBO MEDICAL NEEDLE CO.,LTD, China
Thermostatic heating platform Qingdao Juchuang Environmental Protection Group Co., Ltd, China
Ultrasound device FUJIFILM VisualSonics, Inc. Vevo 2100 Image modes includes B-Mode, Color Doppler Mode and Pulsed Wave Doppler Mode
Ultrasound gel Parker Laboratories,United States REF 01-08
Ultrasound transducer FUJIFILM VisualSonics, Inc. MS 400

DOWNLOAD MATERIALS LIST

References

  1. Sanz, J., Sanchez-Quintana, D., Bossone, E., Bogaard, H. J., Naeije, R. Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review. Journal of the American College of Cardiology. 73 (12), 1463-1482 (2019).
  2. Alonso-Gonzalez, R., Dimopoulos, K., Ho, S., Oliver, J. M., Gatzoulis, M. A. The right heart and pulmonary circulation (IX). The right heart in adults with congenital heart disease. Revista Española de Cardiología. 63 (9), 1070-1086 (2010).
  3. Kovacs, A., Lakatos, B., Tokodi, M., Merkely, B. Right ventricular mechanical pattern in health and disease: beyond longitudinal shortening. Heart Failure Reviews. 24 (4), 511-520 (2019).
  4. Ye, L., et al. Role of blood oxygen saturation during postnatal human cardiomyocyte cell cycle activities. JACC: Basic to Translational Science. 5 (5), 447-460 (2020).
  5. Ye, L., et al. Pressure overload greatly promotes neonatal right ventricular cardiomyocyte proliferation: a new model for the study of heart regeneration. Journal of the American Heart Association. 9 (11), e015574 (2020).
  6. Geraets, I. M. E., Glatz, J. F. C., Luiken, J., Nabben, M. Pivotal role of membrane substrate transporters on the metabolic alterations in the pressure-overloaded heart. Cardiovascular Research. 115 (6), 1000-1012 (2019).
  7. Burns, K. M., et al. New mechanistic and therapeutic targets for pediatric heart failure: report from a National Heart, Lung, and Blood Institute working group. Circulation. 130 (1), 79-86 (2014).
  8. Shaddy, R. E., et al. Carvedilol for children and adolescents with heart failure: a randomized controlled trial. Journal of the American Medical Association. 298 (10), 1171-1179 (2007).
  9. Flaim, S. F., Minteer, W. J., Nellis, S. H., Clark, D. P. Chronic arteriovenous shunt: evaluation of a model for heart failure in rat. American Journal of Physiology. 236 (5), H698-H704 (1979).
  10. Liu, Z., Hilbelink, D. R., Crockett, W. B., Gerdes, A. M. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Developing and established hypertrophy. Circulation Research. 69 (1), 52-58 (1991).
  11. Scheuermann-Freestone, M., et al. A new model of congestive heart failure in the mouse due to chronic volume overload. European Journal of Heart Failure. 3 (5), 535-543 (2001).
  12. Du, Y., Plante, E., Janicki, J. S., Brower, G. L. Temporal evaluation of cardiac myocyte hypertrophy and hyperplasia in male rats secondary to chronic volume overload. The American Journal of Pathology. 177 (3), 1155-1163 (2010).
  13. Wu, J., Luo, X., Huang, Y., He, Y., Li, Z. Hemodynamics and right-ventricle functional characteristics of a swine carotid artery-jugular vein shunt model of pulmonary arterial hypertension: An 18-month experimental study. Experimental Biology and Medicine. 240 (10), 1362-1372 (2015).
  14. Sun, S., et al. Postnatal right ventricular developmental track changed by volume overload. Journal of the American Heart Association. 10 (16), e020854 (2021).
  15. Wang, S., et al. Metabolic maturation during postnatal right ventricular development switches to heart-contraction regulation due to volume overload. Journal of Cardiology. 79 (1), 110-120 (2022).
  16. Zhou, C., et al. Downregulated developmental processes in the postnatal right ventricle under the influence of a volume overload. Cell Death Discovery. 7 (1), 208 (2021).
  17. Cui, Q., et al. Volume overload initiates an immune response in the right ventricle at the neonatal stage. Frontiers in Cardiovascular Medicine. 8, 772336 (2021).
  18. Cheng, H. W., et al. Assessment of right ventricular structure and function in mouse model of pulmonary artery constriction by transthoracic echocardiography. Journal of Visualized Experiments. (84), e51041 (2014).
  19. Sawada, H., et al. Ultrasound imaging of the thoracic and abdominal aorta in mice to determine aneurysm dimensions. Journal of Visualized Experiments. (145), e59013 (2019).
  20. Thibault, H. B., et al. Noninvasive assessment of murine pulmonary arterial pressure: validation and application to models of pulmonary hypertension. Circulation: Cardiovascular Imaging. 3 (2), 157-163 (2010).
  21. Mori, Y., et al. A new dynamic three-dimensional digital color doppler method for quantification of pulmonary regurgitation: validation study in an animal model. Journal of the American College of Cardiology. 40 (6), 1179-1185 (2002).
  22. Bossers, G. P. L., et al. Volume load-induced right ventricular dysfunction in animal models: insights in a translational gap in congenital heart disease. European Journal of Heart Failure. 20 (4), 808-812 (2018).
  23. Yamamoto, K., et al. The mouse aortocaval fistula recapitulates human arteriovenous fistula maturation. American Journal of Physiology. Heart and Circulatory Physiology. 305 (12), H1718-H1725 (2013).
  24. Jouannic, J. M., et al. The effect of a systemic arteriovenous fistula on the pulmonary arterial blood pressure in the fetal sheep. Prenatal Diagnosis. 22 (1), 48-51 (2002).
  25. Jouannic, J. M., et al. Systemic arteriovenous fistula leads to pulmonary artery remodeling and abnormal vasoreactivity in the fetal lamb. American Journal of Physiology. Lung Cellular and Molecular Physiology. 285 (3), L701-L709 (2003).
  26. Patel, M. D., et al. Echocardiographic assessment of right ventricular afterload in preterm infants: maturational patterns of pulmonary artery acceleration time over the first year of age and implications for pulmonary hypertension. Journal of the American Society of Echocardiography. 32 (7), 884-894 (2019).
  27. Habash, S., et al. Normal values of the pulmonary artery acceleration time (PAAT) and the right ventricular ejection time (RVET) in children and adolescents and the impact of the PAAT/RVET-index in the assessment of pulmonary hypertension. The International Journal of Cardiovascular Imaging. 35 (2), 295-306 (2019).
  28. Arkles, J. S., et al. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine. 183 (2), 268-276 (2011).

Tags

出生後、右心室、容積過多、マウスモデル、先天性心疾患、発生段階、心筋、腹部動静脈瘻、形態変化、血行動態変化、腹部超音波検査、心エコー検査、組織化学染色、生存率、瘻孔成功率、RV腔拡大、自由壁肥厚、脳卒中容積増加、RV収縮期血圧上昇、肺動脈逆流、肺動脈リモデリング、動静脈瘻手術、モデルステータス確認
出生後右心室容積過負荷マウスモデルの確立と確認
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Sun, S., Zhu, H., Wang, S., Xu, X.,More

Sun, S., Zhu, H., Wang, S., Xu, X., Ye, L. Establishment and Confirmation of a Postnatal Right Ventricular Volume Overload Mouse Model. J. Vis. Exp. (196), e65372, doi:10.3791/65372 (2023).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter