Summary

一个Biomining从宏基因组库的纤维素酶的活性高通量筛选

Published: February 01, 2011
doi:

Summary

该协议描述了一种在大肠杆菌中表达了宏基因组文库的纤维素活动的高通量筛选。屏幕解决方案的基础和高度自动化,并采用一锅煮化学与最后一个测吸光度读数在384孔板。

Abstract

纤维素,有机碳在这个星球上最丰富的来源,具有广泛的工业应用日益重视生物燃料生产 1 。修改或降解纤维素的化学方法通常需要强酸和高温。因此,酶的方法已经成为突出的生物转化过程中。虽然已经有点有效识别来自细菌和真菌菌株的积极纤维素酶,微生物在自然界中的绝大多数抵制实验室培养。环境基因组学,又称宏基因组,筛选方法有很大的希望,在弥合在培育新型生物转化酶的搜索差距。宏基因组筛选方法已成功地从环境恢复新颖纤维素酶作为土壤2,水牛瘤胃3和白蚁后肠4使用羧甲基纤维素钠(CMC)的琼脂板用刚果红染料(5 Teather和木材的方法的基础上)染色不同。然而,中央军委的方法是在吞吐量有限,不定量,并表现出低信号信噪比6。其他方法已经7,8报道,但每次使用的琼脂平板为基础的检测,这是为大型插入基因组文库的高通量筛选的不良。在这里,我们提出了一个解决方案,基于纤维素酶的活动,使用显色二硝基苯酚(DNP)cellobioside基板9屏幕。我们的资料库,克隆到fosmid增加检测的灵敏度,通过拷贝数诱导 10 pCC1复制控制。该方法使用一锅煮化学作为测吸光度提供的最终读数384孔板。定量,灵敏,吞吐量高达每天100X 384孔板使用液体处理和附有堆垛系统酶标仪自动读数。

Protocol

本议定书开始之前,您将需要您的宏基因组文库在384孔板格式存储。在我们的研究中,我们结合使用噬菌体T1耐TransforMax EPI300 – T1 ř 大肠杆菌 pCC1复制fosmid矢量控制大肠杆菌细胞库的主机和存储我们的板在-80℃11。 1。复制的宏基因组文库板除霜板包含您的图书馆在37℃,约20分钟,或者直到所有的水井都解冻。 消毒15分钟的机器人上…

Discussion

大肠杆菌中表达了一个高通量筛选,从一个大的插入基因组DNA的宏基因组文库的快速检测纤维素活动大肠杆菌是在本议定书。这个方法是在CMC /刚果红在文献中常用的检测改善。这是解决方案为基础,并允许一锅煮化学筛选与定量分析,使读者从板块的吸光度读数最终输出384孔板。在这个过程的每一步自动化允许超过25每小时384板无监督检查。从软件中的数据可以很容易地导出到Mic…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢史蒂夫威瑟斯博士和香港明陈提供的DNP – Cellobioside基板。

Materials

Material Name Type Company Catalogue Number Comment
qPix2   Genetix   With 384-pin gridding head
qFill3   Genetix   With 384-well manifold
Varioskan   Thermo-Fisher    
RapidStak   Thermo-Fisher   Connected to Varioskan
Micro90 Detergent   Cole-Parmer 18100-00 Diluted to 2% in water
Ethanol   Major Lab Supplier   Diluted to 80% in water
Chloramphenicol   Sigma C0378 12.5mg/mL in ethanol
LB broth, Miller   Fisher BP1426-2 25g/L, autoclaved
         
384-well flat bottom plates   Corning 3680  
L-(+)-Arabinose   Sigma A3256 100mg/mL in water
Potassium Acetate   Fisher P171 50mM in water, autoclaved, adjusted to pH 5.5 with HCl
Triton X-100   Fisher BP151  
Trizma hydrochloride   Sigma T3253 In TE buffer solution, 100mM
EDTA disodium salt   Sigma E5134 In TE buffer solution, 10mM
2,4-dinitrophenyl cellobioside       Provided by Dr. Steve Withers, UBC
Dimethyl Sulfoxide   Sigma D8418  

References

  1. Rubin, E. M. Genomics of cellulosic biofuels. Nature. 454, 841-845 (2008).
  2. Voget, S., Steele, H. L., Streit, W. R. Characterization of a metagenome derived halotolerant cellulase. J. Biotechnol. 126, 26-36 (2006).
  3. Duan, C. J. Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J. Appl. Microbiol. 107, 245-256 (2009).
  4. Zhang, Y. H. P. Outlook for cellulase improvement: Screening and selection strategies. Biotech. Advances. 24, 452-481 (2006).
  5. Teather, R. M., Wood, P. J. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. And Environ. Microbiol. 43, 777-780 (1982).
  6. Sharrock, K. R. Cellulase assay methods: a review. J. Biochem and Biophys Methods. 17, 81-106 (1988).
  7. Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., Gulati, A. A rapid and easy method for detection of microbial cellulases on agar plates using Gram’s Iodine. Curr. Microbiology. 57, 503-507 (2008).
  8. Huang, J. S., Tang, J. Sensitive assay for cellulase and dextranase. Anal. Biochem. 73, 369-377 (1976).
  9. Tull, D., Withers, S. G. Mechanisms of cellulases and xylanases: A detailed kinetic study of the exo-beta-1,4-glycanase from Cellulomonas fimi. Biochemistry. 33, 6363-6370 (1994).
  10. Martinez, A., Bradley, A. S., Waldbauer, J. R., Summons, R. E., DeLong, E. F. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. PNAS. 104, 5590-5595 (2007).
  11. Taupp, M., Lee, S., Hawley, A., Yang, J., Hallam, S. J. Large Insert Environmental Genomic Library Production. J Vis Exp. , (2009).
  12. Martinez, A., Tyson, G. W., DeLong, E. F. Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses. Environ Microbiol. 12, 222-238 (2010).
  13. Wild, J., Hradecna, Z., Szybalski, W. Conditionally amplifiable BACs: Switching from single-copy to high-copy vectors and genomic clones. Genome Research. 12, 1434-1444 (2002).
  14. Johnson, E. A. Sacchirification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl Environ Microbiology. 43, 1125-1132 (1982).
  15. Stutzenberger, F. J. Cellulase Production by Thermomonospora curvata isolated from municipal solid waste compost. Appl Environ Microbiol. 22, 147-152 (1971).
check_url/2461?article_type=t

Play Video

Cite This Article
Mewis, K., Taupp, M., Hallam, S. J. A High Throughput Screen for Biomining Cellulase Activity from Metagenomic Libraries. J. Vis. Exp. (48), e2461, doi:10.3791/2461 (2011).

View Video