Summary

Overvågning Protein Adsorption med Solid-state Nanopores

Published: December 02, 2011
doi:

Summary

En metode til ved hjælp af solid-state nanopores til at overvåge ikke-specifikke adsorption af proteiner ud på en uorganisk overflade er beskrevet. Metoden anvender resistive-puls princip, der giver mulighed for adsorption til probed i real-time og på enkelt-molekyle niveau. Fordi processen med enkelt protein adsorption er langt fra ligevægt, foreslår vi ansættelse af parallelle arrays af syntetiske nanopores, der gør det muligt for kvantitativ bestemmelse af den tilsyneladende første-ordens reaktion hastighedskonstanten af ​​protein adsorption samt og Langmuir adsorption konstant.

Abstract

Solid-state nanopores er blevet brugt til at udføre målinger på enkelt-molekyle niveau for at undersøge den lokale struktur og fleksibilitet af nukleinsyrer 1-6, udfoldelsen af proteiner 7, og bindende affinitet for forskellige ligander 8. Ved at koble disse nanopores til resistive-puls teknik 9-12, kan sådanne målinger ske under en lang række betingelser og uden behov for mærkning 3. I den resistive-puls teknik, er en ionisk salt-opløsning, der indføres på begge sider af nanopore. Derfor er ioner drevet fra den ene side af salen til den anden ved en påført transmembrane potentiale, hvilket resulterer i en lind strøm. Opdelingen af ​​en analyt i nanopore forårsager en veldefineret afbøjning i denne strøm, som kan analyseres for at udtrække en enkelt-molekyle oplysninger. Ved hjælp af denne teknik, kan adsorption af enkelte proteiner til nanopore væggene blive overvåget i henhold til en bred vifte afbetingelser 13. Protein adsorption vokser i betydning, for som mikrofluidenheder skrumpe i størrelse, samspillet mellem disse systemer med enkelte proteiner bliver et problem. Denne protokol beskriver en hurtig analyse for protein binding til nitrid film, som let kan udvides til andre tynde film gøres til genstand for nanopore boring, eller at funktionaliserede nitrid overflader. En række af proteiner kan undersøges under en bred vifte af løsninger og denaturering betingelser. Derudover kan denne protokol bruges til at udforske mere grundlæggende problemer med at bruge nanopore spektroskopi.

Protocol

1. Fremstilling af solid-state nanopores i siliciumnitrid membraner Bring FEI Tecnai F20 S / TEM til en acceleration spænding på 200 kV. Hvis du bruger et andet S / TEM, bør acceleration spændingen være større end eller lig med 200 kV 9 Load en 20 nm tyk SPI siliciumnitrid vindue gitter i TEM prøveholderen og rengør med Oxygen plasma i 30 sekunder for at fjerne forurenende stoffer fra indehaveren. Læg prøven i S / TEM og give mulighed for vakuum at pumpe ned. Når S / …

Discussion

Spontan adsorption af proteiner på solid-state overflader 27-29 er fundamentalt vigtige i en række områder, såsom biochip applikationer og design af en ny klasse af funktionelle hybrid biomaterialer. Tidligere undersøgelser har vist, at proteiner adsorberes til solid state-overflader ikke viser lateral mobilitet eller væsentlige desorption satser, og derfor er protein adsorption er generelt betragtes som en irreversibel og uspecifik proces 30-32. Protein adsorption på solid state overflader …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Forfatterne vil gerne takke John Grazul (Cornell University), André Marziali (University of British Columbia i Vancouver) og Vincent Tabard-Cossa (The University of Ottawa) for deres rådgivning. Dette arbejde er finansieret delvist af tilskud fra den amerikanske National Science Foundation (DMR-0706517 og DMR-1006332) og National Institutes of Health (R01-GM088403). Den nanopore boring blev udført ved Electron Microscopy facilitet i Cornell Center for Materials Research (CCMR) med støtte fra National Science Foundation – Materialeforskning Science and Engineering Centers (MRSEC) program (DMR 0.520.404). Forberedelsen af ​​silicium nitrid membranerne blev udført på Cornell nanoskala Facility, et medlem af National Nanotechnology Infrastructure Network, som er støttet af National Science Foundation (Grant ECS-0335765).

Materials

Name of the reagent Company Catalogue number Comments
Tecnai F20 S/TEM FEI   S/TEM requires acceleration voltage ≥200kV and field-emission source.
20 nm thick silicon nitride membrane window for TEM SPI 4163SN-BA  
Axon Axopatch 200B patch-clamp amplifier Molecular Devices    
Axon Digidata 1440A Molecular Devices    
pCLAMP 10 software Molecular Devices   Electrophysiology Data Acquisition and Analysis Software
Sulfuric Acid Fisher Scientific A300  
hydrogen peroxide Fisher Scientific H325  
silicone O-rings McMaster-Carr 003 S70 Alternatively use PDMS
silver wire Sigma-Aldrich 348759 For electrodes
SPC Technology, D sub contact, pin Newark 9K4978 For electrodes
potassium chloride Sigma P9541  
potassium phosphate dibasic Sigma P2222  
potassium phosphate monobasic Sigma P5379  
PDMS Dow Corning   Sylgar 184 Elastomer set. For making chamber.
Kwik-Cast Sealant World Precision Instruments KWIK-CAST Fast acting silicone sealant
hot plate Fisher Scientific    
Faraday cage      

References

  1. Li, J. Ion-beam sculpting at nanometre length scales. Nature. 412, 166-169 (2001).
  2. Li, J., Gershow, M., Stein, D., Brandin, E., Golovchenko, J. A. DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater. 2, 611-615 (2003).
  3. Dekker, C. Solid-state nanopores. Nature. Nanotechnology. 2, 209-215 (2007).
  4. Branton, D. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146-1153 (2008).
  5. Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y., Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 5, 160-165 (2010).
  6. Peng, H., Ling, X. S. Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology. 20, 185101-185101 (2009).
  7. Talaga, D. S., Li, J. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287-9297 (2009).
  8. Zhao, Q. Detecting SNPs using a synthetic nanopore. Nano. Lett. 7, 1680-1685 (2007).
  9. Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537-540 (2003).
  10. Sexton, L. T. Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. 129, 13144-13152 (2007).
  11. Martin, C. R., Siwy, Z. S. Chemistry. Learning nature’s way: biosensing with synthetic nanopores. Science. 317, 331-332 (2007).
  12. Sexton, L. T. An adsorption-based model for pulse duration in resistive-pulse protein sensing. J. Am. Chem. Soc. 132, 6755-6763 (2010).
  13. Niedzwiecki, D. J., Grazul, J., Movileanu, L. Single-molecule observation of protein adsoption onto an inorganic surface. J. Am. Chem. Soc. 132, 10816-10822 (2010).
  14. Wanunu, M., Meller, A., Selvin, P. R., Ha, T. . Single-molecule techniques: a laboratory manual. , 395-420 (2008).
  15. Han, A. Label-free detection of single protein molecules and protein-protein interactions using synthetic nanopores. Anal. Chem. 80, 4651-4658 (2008).
  16. Han, A. Sensing protein molecules using nanofabricated pores. Appl. Phys. Lett. 88, (2006).
  17. Fologea, D., Ledden, B., McNabb, D. S., Li, J. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 91, (2007).
  18. Firnkes, M., Pedone, D., Knezevic, J., Doblinger, M., Rant, U. Electrically Facilitated Translocations of Proteins through Silicon Nitride Nanopores: Conjoint and Competitive Action of Diffusion, Electrophoresis, and Electroosmosis. Nano. Lett. , (2010).
  19. Pedone, D., Firnkes, M., Rant, U. Data analysis of translocation events in nanopore experiments. Anal. Chem. 81, 9689-9694 (2009).
  20. Oukhaled, A. Dynamics of Completely Unfolded and Native Proteins through Solid-State Nanopores as a Function of Electric Driving Force. ACS. Nano.. , (2011).
  21. Yusko, E. C. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6, 253-260 (2011).
  22. Arafat, A., Schroen, K., de Smet, L. C., Sudholter, E. J., Zuilhof, H. Tailor-made functionalization of silicon nitride surfaces. J. Am. Chem. Soc. 126, 8600-8601 (2004).
  23. Wanunu, M., Meller, A. Chemically modified solid-state nanopores. Nano. Lett. 7, 1580-1585 (2007).
  24. Movileanu, L., Cheley, S., Bayley, H. Partitioning of individual flexible polymers into a nanoscopic protein pore. Biophys. J. 85, 897-910 (2003).
  25. Aksimentiev, A. Deciphering ionic current signatures of DNA transport through a nanopore. Nanoscale. 2, 468-483 (2010).
  26. Timp, W. Nanopore Sequencing: Electrical Measurements of the Code of Life. IEEE Trans. Nanotechnol. 9, 281-294 (2010).
  27. Roach, P., Farrar, D., Perry, C. C. Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J. Am. Chem. Soc. 128, 3939-3945 (2006).
  28. Roach, P., Farrar, D., Perry, C. C. Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168-8173 (2005).
  29. Brewer, S. H., Glomm, W. R., Johnson, M. C., Knag, M. K., Franzen, S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir. 21, 9303-9307 (2005).
  30. Schon, P., Gorlich, M., Coenen, M. J., Heus, H. A., Speller, S. Nonspecific protein adsorption at the single molecule level studied by atomic force microscopy. Langmuir. 23, 9921-9923 (2007).
  31. Rabe, M., Verdes, D., Zimmermann, J., Seeger, S. Surface organization and cooperativity during nonspecific protein adsorption events. J. Phys. Chem. B. 112, 13971-13980 (2008).
  32. Rabe, M., Verdes, D., Rankl, M., Artus, G. R., Seeger, S. A comprehensive study of concepts and phenomena of the nonspecific adsorption of beta-lactoglobulin. Chemphyschem. 8, 862-872 (2007).
  33. Micic, M., Chen, A., Leblanc, R. M., Moy, V. T. Scanning Electron Microscopy Studies of Protein-Functionalized Atomic Force Microscopy Cantilever Tips. Scanning. 21, 394-397 (1999).
  34. Grant, A. W., Hu, Q. H., Kasemo, B. Transmission electron microscopy ‘windows’ for nanofabricated structures. Nanotechnology. 15, 1175-1181 (2004).
  35. Giannoulis, C. S., Desai, T. A. Characterization of proteins and fibroblasts on thin inorganic films. J. Mater. Sci: Mater. Med. 13, 75-80 (2002).
  36. Gustavsson, J. Surface modifications of silicon nitride for cellular biosensors applications. J. Mater. Sci: Mater. Med. 19, 1839-1850 (2008).
  37. Shirshov, Y. M. Analysis of the response of planar polarization interferometer to molecular layer formation: fibrinogen adsorption on silicon nitride surface. Biosens. Bioelectron. 16, 381-390 (2001).
  38. Chen, P. Atomic layer deposition to fine-tune the surface properties and diamters of fabricated nanopores. Nano. Lett. 4, 1333-1337 (2004).
  39. Siwy, Z. Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127, 5000-5001 (2005).
  40. Ding, S., Gao, C., Gu, L. Q. Capturing Single Molecules of Immunoglobulin and Ricin with an Aptamer-Encoded Glass Nanopore. Anal. Chem. , (2009).
  41. Kim, M. -. J., Wanunu, M., Bell, C. D., Meller, A. Rapid Fabrication of Uniform Size Nanopores and Nanopore Arrays for Parallel DNA Analysis. Adv. Mater. 18, 3149-3153 (2006).
  42. Bezrukov, S. M. Ion channels as molecular Coulter counters to probe metabolite transport. J. Membr. Biol. 174, 1-13 (2000).

Play Video

Cite This Article
Niedzwiecki, D. J., Movileanu, L. Monitoring Protein Adsorption with Solid-state Nanopores. J. Vis. Exp. (58), e3560, doi:10.3791/3560 (2011).

View Video