Summary

捕获复合质谱 - 一个强大的工具来确定新型C-二GMP效应蛋白

Published: March 29, 2015
doi:

Summary

The ubiquitous second messenger c-di-GMP controls growth and behavior of many bacteria. We have developed a novel Capture Compound Mass Spectrometry based technology to biochemically identify and characterize c-di-GMP binding proteins in virtually any bacterial species.

Abstract

在对第二信使C-二GMP的参与合成(diguanylate环化酶)和降解(磷酸二酯酶)酶的鉴定和表征过去的十年里已经取得了长足的进步。与此相反,小的信息是可用的关于分子机制和细胞成分通过此信号传导分子调节的细胞过程的一个不同的范围。大多数已知的效应蛋白属于Pilz家族或正在退化diguanylate环化酶和磷酸二酯酶已经放弃了催化作用,并已采取效应功能。因此,为了在大范围细菌的实验方法是必需的,以确定和验证的量可靠,在硅片预测失败新颖效应的更好地确定蜂窝的c-二叔GMP的网络。

我们最近开发出一种新型的复合捕获质谱(CCMS)基于技术作为一个强大的工具,生化识别和描述的c-二GMP结合蛋白。这种技术先前已经报道为适用于广泛范围的生物体1。在这里,我们给大家利用来探测这样的信号成分的协议的详细说明。作为一个例子,我们使用绿脓杆菌 ,一种条件致病菌其中c二叔GMP起着毒力和生物膜控制的关键作用。 CCMS确定的c二叔GMP的网络的已知或预测的部件的74%(38/51)。这项研究详细解释了CCMS程序,并建立它作为一个强大和灵活的工具,以查明参与小分子信号的新组件。

Introduction

C-二叔GMP的是所使用的大多数细菌,以控制它们的生长和行为的各种方面的关键的第二信使。例如,C-二叔GMP的调节细胞周期进程,迁移和胞外多糖和表面粘附2-4的表达。通过这样的过程的协调的c-二叔GMP的促进生物膜的形成,这是与一个范围病原菌5的慢性感染相关的处理。 C-二GMP是由酶称为diguanylate环化酶(DGCS)窝藏催化GGDEF域4合成出。一些DGCS具有抑制网站在C-二GMP绑定下调的环化酶活性。 C-二叔GMP的降解是由两个不同的类磷酸二酯酶(PDE)窝藏或者催化EAL或HD-GYP域6,7催化。

大部分已知的效应蛋白的直接结合的c-二叔GMP仅属于三类蛋白之一:催化盟友不活跃GGDEF或EAL域和域皮尔磁,即发生在C-二GMP结合8的构象变化小的分子开关。 DGCS,偏微分方程和皮尔磁蛋白很好的特点和他们的域可以相对安全地预测,在硅片 。特别感兴趣,现在专注于新型的C-二GMP效应的鉴定。一些C二叔GMP的效应具有不同结合基序被描述最近诸如CRP / FNR蛋白家族Bcam1349在伯克霍尔德新洋葱伯克霍尔德杆菌P的转录调节FLEQ 铜绿假单胞菌 9,10。此外,C-二叔GMP特异性核糖开关最近确定和示出,以控制基因表达的c二叔GMP依赖性11。不同效应的c二叔GMP的结合基序仅很差保守制造这种蛋白质的生物信息学预测困难。为了解决这个问题,我们开发了一种生物化学方法,它是基于使用一个C二叔GMP的SPE的cific捕捉化合物结合质谱1,12,13。

我们最近设计了一种新的三价的c-二叔GMP的捕捉化合物(CDG-CC中, 1)1。这种化学物质的支架的组成如下:1)一个用作诱饵捕获的c-二叔GMP的结合蛋白的c-二叔GMP的部分,2)紫外线光活化反应性基团用于交联所述CDG-CC的结合的蛋白质和3)生物素分离使用链霉亲和包被的磁珠捕获的蛋白质。在CDG-CC可用于直接和特异性从大分子作为细胞裂解物的复杂混合物捕获的c-二叔GMP的效应。捕获复合基和化学基蛋白质组学方法先前已报道为适用于广泛范围的生物, 例如柄杆菌新月沙门鼠伤寒P.铜绿假单胞菌 1,14。

在这种方法的论文,我们提供了一个使用P的提取CCMS程序的深入介绍假单胞菌作为一个例子。本研究建立CCMS作为一个强大和灵活的工具,生化鉴定涉及小分子信号的新组件。

Protocol

1.准备裂解液成长P.假单胞菌细胞在LB到所需的外径。 注:对于指导:使用日志阶段文化≈百毫升文化/样品固定相的文化和≈500毫升文化性/样品(OD 600nm的 = 0.5)。 粒料通过离心20分钟,在5000×g 下。 重悬0.5-1克颗粒在1ml裂解缓冲液(6.7毫MES,6.7毫米的HEPES,200mM的氯化钠,6.7毫醋酸钾,滴滴涕1毫米,pH值7.5)中,并添加蛋白酶抑制剂(完全迷你型,?…

Representative Results

为了找出P.新颖C-二GMP效应铜绿假单胞菌 ,我们系统地使用CCMS分析P.的可溶性和膜组分从对数期培养假单胞菌菌株PAO1(OD 600 = 0.5)。在这里,我们总结和讨论这个摸底的代表性结果。四个独立的生物复制品被使用。对于每个实验两个不同CDG-CC的浓度使用(5微米和10微米)。探测特异性,进行了实验,在1mM的C-二叔GMP作为竞争,最后在存在或不存在,用珠对照( <e…

Discussion

特别应注意,在几个步骤的协议。蛋白质浓度是用10毫克的浓度的关键参数/ ml的暂时难以达到当细胞在特定的生长条件( 例如生物膜或小菌落变体)生长。因此,将沉淀再悬浮应在裂解缓冲液的低体积来进行。蛋白质浓度可以降低到8毫克/毫升。相比由Nesper 等人的 1公开的方法中,我们加入不同的核苷酸的捕获反应,以尽量减少核苷酸结合蛋白的非特异性捕获。虽然在加入?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Alberto Reinders for his work in optimizing the CCMS conditions for P. aeruginosa. We also thank Pablo Manfredifor the annotation of the P. aeruginosa proteins. This work was supported by the Swiss National Science Foundation (SNF) Sinergia grant CRSII3_127433.

Materials

caproBox caprotec bioanalytics 1-5010-001 (220 V) UV lamps coupled to a cooling 96-plate cooling block, for the photoactivation
caproMag caprotec bioanalytics included in the CCMS Starter Kit For easy handling of magnetic particles without pipetting
c-di-GMP caproKit caprotec bioanalytics upon request The kit contains the c-di-GMP-capture compound, c-di-GMP (for the competition control), streptavidin coated magnetic beads, capture buffer, and washing buffer
Disposable PD-10 Desalting Columns GE Healthcare 17-0851-01 
12-tube PCR strips Thermo Scientific AB-1114
UIS250v sonicator with VialTweeter Hielscher ultrasound technology UIS250v and VialTweeter
Miniature French Pressure Cell Thermo Electron Corporation FA-003

References

  1. Nesper, J., Reinders, A., Glatter, T., Schmidt, A., Jenal, U. A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J Proteomics. 75, 4874-4878 (2012).
  2. Hengge, R. Principles of c-di-GMP signalling in bacteria. Nature reviews. Microbiology. 7, 263-273 (2009).
  3. Sondermann, H., Shikuma, N. J., Yildiz, F. H. You’ve come a long way: c-di-GMP signaling. Curr. Opin. Microbiol. 15, 140-146 (2012).
  4. Schirmer, T., Jenal, U. Structural and mechanistic determinants of c-di-GMP signalling. Nature reviews. Microbiology. 7, 724-735 (2009).
  5. Furukawa, S., Kuchma, S., O’Toole, G. Keeping their options open: acute versus persistent infections. J. Bacteriol. 188, 1211-1217 (2006).
  6. Christen, M., Christen, B., Folcher, M., Schauerte, A., Jenal, U. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem. 280, 30829-30837 (2005).
  7. Ryan, R. P., Fouhy, Y., Lucey, J. F., Dow, J. M. Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J. Bacteriol. 188, 8327-8334 (2006).
  8. Habazettl, J., Allan, M. G., Jenal, U., Grzesiek, S. Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies charge clustering as molecular readout. J. Biol. Chem. 286, 14304-14314 (2011).
  9. Fazli, M., et al. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Molecular Microbiology. 82, 327-341 (2011).
  10. Hickman, J. W., Harwood, C. S. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Molecular Microbiology. 69, 376-389 (2008).
  11. Sudarsan, N., et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science. 321, 411-413 (2008).
  12. Lenz, T., et al. Profiling of methyltransferases and other S-adenosyl-L-homocysteine-binding Proteins by Capture Compound Mass Spectrometry (CCMS). J Vis Exp. , (2010).
  13. Köster, H., et al. Capture compound mass spectrometry: a technology for the investigation of small molecule protein interactions. Assay Drug Dev Technol. 5, 381-390 (2007).
  14. Düvel, J., et al. A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. Journal of Microbiological Methods. 88, 229-236 (2012).
  15. Christen, B., et al. Allosteric control of cyclic di-GMP signaling. J. Biol. Chem. 281, 32015-32024 (2006).
  16. Balasubramanian, D., Mathee, K. Comparative transcriptome analyses of Pseudomonas aeruginosa. Human genomics. 3, 349-361 (2009).
  17. Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 3 (3), (2004).
  18. Baraquet, C., Harwood, C. S. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Proc. Natl. Acad. Sci. U.S.A. 110, 18478-18483 (2013).
  19. Nesper, J., Reinders, A., Glatter, T., Schmidt, A., Jenal, U. A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J Proteomics. 75, 4874-4878 (2012).
  20. Roelofs, K. G., Wang, J., Sintim, H. O., Lee, V. T. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc. Natl. Acad. Sci. U.S.A. 108, 15528-15533 (2011).
  21. DeSantis, K., Reed, A., Rahhal, R., Reinking, J. Use of differential scanning fluorimetry as a high-throughput assay to identify nuclear receptor ligands. Nuclear receptor signaling. 10, e002 (2012).
  22. Seidel, S. A., et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods. 59, 301-315 (2013).
  23. Merighi, M., Lee, V. T., Hyodo, M., Hayakawa, Y., Lory, S. The second messenger bis-(3‘-5’)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Molecular Microbiology. 65, 876-895 (2007).
  24. Qi, Y., et al. Binding of cyclic diguanylate in the non-catalytic EAL domain of FimX induces a long-range conformational change. J. Biol. Chem. 286, 2910-2917 (2011).

Play Video

Cite This Article
Laventie, B., Nesper, J., Ahrné, E., Glatter, T., Schmidt, A., Jenal, U. Capture Compound Mass Spectrometry – A Powerful Tool to Identify Novel c-di-GMP Effector Proteins. J. Vis. Exp. (97), e51404, doi:10.3791/51404 (2015).

View Video