Summary

Afledning af Cardiac progenitorceller af embryonale stamceller

Published: January 12, 2015
doi:

Summary

In this protocol, derivation of cardiac progenitor cells from both mouse and human embryonic stem cells will be illustrated. A major strategy in this protocol is to enrich cardiac progenitor cells with flow cytometry using fluorescent reporters engineered into the embryonic stem cell lines.

Abstract

Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes, smooth muscle cells (SMC), and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs, differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result, numerous strategies have been developed to derive CPCs from ESCs. In this protocol, differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs, ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus, CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.

Introduction

Hjertesygdom er den hyppigste årsag i verden i dag, og dødeligheden er forblevet stort set uændret i de seneste to årtier (American Heart Association). Der er et kritisk behov for udvikling af nye terapeutiske strategier til effektivt forebygge eller reversere hjertesvigt. En lovende strategi er celle-baseret behandling efter den hurtige udvikling af stamceller biologi 1. I denne henseende kunne multipotente CPC være en fremragende cellekilde til terapi på grund af deres evne til at formere sig, men kun forpligtet til hjerte- afstamning differentiering. Derfor er effektiv og robust metode generere og isolere CPC'er er af stor betydning for studier hjerte celleterapi.

Denne protokol fokuserer på embryonale CPC'er identificeret under tidlig embryogenese og hvordan deres produktion fra økonomiske og sociale råd. Forskellige CPC'er er blevet isoleret fra embryonale og voksne hjerter, selv fra knoglemarv 2. Under udviklingen embryo, ben morphogetiske proteiner (BMP'er), vingeløse-type MMTV integrationssted familiemedlemmer (Wnts) og Nodal signaler inducerer engagement Mesp1 + multipotent mesoderm 3. Mesp1 + celler derefter differentiere til de embryonale CPC'er 4. Disse CPC'er typisk præget af HCN4, NK2 homeobox 5 (Nkx2-5), Isl LIM homeobox 1 (Isl1), T-box 5 (Tbx5), og myocyt forstærker faktor 2C (Mef2c), danner primære og andet hjerte felter, og bidrage til de store dele af hjertet under cardiogenese 5-10. Både Nkx2-5 + og Isl1 + / Mef2c + CPC er i stand til at differentiere til cardiomyocytter, glatte muskelceller (SMC'er), og endotelceller 5-8. Således disse CPC'er vil give anledning til hjerte-kar samt hjertevæv og er en ideel celle kilde til cellebaserede hjerte terapi. Derfor genererer CPC'er in vitro har været et stort forskningsfokus i hjerte-kar-studier. Da økonomiske og sociale råd har ubegrænset ekspansion kapacitet and repræsenterer ICM celler ved blastocyststadiet, er differentiering af økonomiske og sociale råd i embryonale CPC'er efter den naturlige embryogenese betragtes som en logisk og effektiv tilgang til at opnå priser pr.

En almindelig anvendt metode til at opnå CPC'er fra økonomiske og sociale råd er at samle økonomiske og sociale råd i EB'er 11. For at forbedre differentiering effektivitet, har defineret kemiske og vækstfaktorer baseret på viden om hjerte-udvikling blevet brugt 12-14. Men der er ingen endelige CPC markører, især ingen celle-overflade markører, der er almindeligt accepteret i marken. For at løse dette problem, er økonomiske og sociale råd manipuleret til at markere Isl1 + eller Mef2c + CPC'er og deres derivater med fluorescerende reportere ved hjælp Cre / loxP-systemet. Cre-rekombinase er slået i under kontrol af Isl1 / Mef2c promotor / enhancer. Modificeret fluorescerende protein RFP eller YFP-genet drevet af en konstitutiv promotor kan aktiveres ved udskæring af flox stopkodon med Cre-rekombinase(ISL1: cre; pCAG-FLOX-STOP-FLOX-GFP eller RFP / Isl1-cre; Rosa26YFP / Mef2c-CRE; Rosa26YFP) 5,6. Når økonomiske og sociale råd er differentieret i andet hjerte felt CPC'er vil Isl1 / Mef2c promotor / enhancer drevet CRE aktivere de fluorescerende reportere og CPC'er kan beriges ved FACS-oprensning. Kort fortalt EB sammenlægning metode anvendes til at initiere ESC differentiering. For at øge differentiering effektivitet er de differentierede celler behandlet med ascorbinsyre (AA) og vækstfaktorer, såsom BMP4, Activin A og VEGF 13,15. Denne protokol giver robust og effektivt CPC differentiering ved hjælp af både mus og menneskelige økonomiske og sociale råd.

Protocol

1. Udledning af mus embryonale CPC'er fra Mouse økonomiske og sociale råd Forbered muse embryonale fibroblaster (MEF) fødelag. Varm MEF medium (10% FBS i DMEM) til 37 ° C. Forbered gelatineovertrukne plader. Der tilsættes 1 ml 0,1% gelatine i vand i en brønd på 6-brønds plade eller 5 ml i en 10 cm skål. Lad plader eller retter på 37 ° C eller stuetemperatur i mindst 30 min. Stræber gelatinen før brug. Thaw bestrålet MEF hurtigt i et 3…

Representative Results

Protokollen viser afledning af CPC fra flere ES-cellelinjer. Økonomiske og sociale råd er aggregerede at danne EB'er at differentiere til CPC'er. ESC rutinemæssigt vedligeholdes på MEF foderautomater (figur 1A, F) og foderautomater fjernes før differentiering. Ved sammenlægning af økonomiske og sociale råd i EB'er i differentiering medium (figur 1B, G), andet dannede EB'er behandlet med BMP4 og Activin A at øge mesoderm differentiering i mus cellelinjer …

Discussion

This protocol combines a method using growth factors to guide mESCs differentiation and spontaneous differentiation of human ESCs into CPCs. CPC lineage marked with fluorescent reporter is used to efficiently identify and isolate CPCs by FACS. The FACS-purified CPCs retain the capacity to differentiate into cardiomyocytes, smooth muscle, and endothelial cells and have a comparable expression profile to the in vivo cells. Thus, these CPCs can serve as a great resource for cell based heart therapy because of their ability …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Leonid Gnatovskiy for his carefully and critical reading of the paper. This work was supported in part by grants from the National Institutes of Health (HL109054) and the Samuel and Jean Frankel Cardiovascular Center, University of Michigan (Inaugural Fund) to WZ and from the Leon H Charney Division of Cardiology, New York University School of Medicine to BL.

Materials

Name Company Catalog Number
FBS Thermo scentific SH30070.03E
Knockout SR Life technology 10828028
Knockout DMEM Life technology 10829018
DMEM Life technology 11965118
NEAA Life technology 11140050
GlutaMAX Life technology 35050061
N2 Life technology 17502048
B27 Life technology 12587010
Ham’s F12 Life technology 11765062
IMDM Life technology 12440061
Pen/Strep Life technology 15140122
Pyruvate Life technology 11360070
Dispase Life technology 17105041
Stempro-34 Life technology 10639011
DMEM/F12 Life technology 11330032
BSA  Life technology 15260037
Trypsin  Life technology 25200056
Ascobic Acid  Sigma A5960
1-Thioglycerol Sigma M1753
2-Mercaptoethanol Sigma M3148
VEGF R&D 293-VE
Bmp4 R&D 314-BP
ActivinA R&D 338-AC
bFgf R&D 233-FB
Fgf10 R&D 345-FG
mTeSR Stemcell technologies 5850
Matrigel BD Biosciences 354277

References

  1. Garbern, J. C., Lee, R. T. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell. 12 (6), 689-698 (2013).
  2. Passier, R., van Laake, L. W., Mummery, C. L. Stem-cell-based therapy and lessons from the heart. Nature. 453 (7193), 322-329 (2008).
  3. Bondue, A., Blanpain, C. Mesp1: a key regulator of cardiovascular lineage commitment. Circulation Research. 107 (12), 1414-1427 (2010).
  4. Bondue, A., et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell. 3 (1), 69-84 (2008).
  5. Bu, L., et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature. 460 (7251), 113-117 (2009).
  6. Lei, I., Gao, X., Sham, M. H., Wang, Z. SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development. The Journal of Biological Chemistry. 287 (29), 24255-24262 (2012).
  7. Lei, I., Liu, L., Sham, M. H., Wang, Z. SWI/SNF in cardiac progenitor cell differentiation. Journal of Cellular Biochemistry. 114 (11), 2437-2445 (2013).
  8. Wu, S. M., et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell. 127 (6), 1137-1150 (2006).
  9. Spater, D., et al. A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nature Cell Biology. 15 (9), 1098-1106 (2013).
  10. Verzi, M. P., McCulley, D. J., De Val, S., Dodou, E., Black, B. L. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Developmental Biology. 287 (1), 134-145 (2005).
  11. Boheler, K. R., et al. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circulation Research. 91 (3), 189-201 (2002).
  12. Wada, R., et al. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proceedings of the National Academy of Sciences of the United States of America. 110 (31), 12667-12672 (2013).
  13. Kattman, S. J., et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 8 (2), 228-240 (2011).
  14. Takahashi, T., et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 107 (14), 1912-1916 (2003).
  15. Wamstad, J. A., et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 151 (1), 206-220 (2012).
  16. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339 (6121), 819-823 (2013).
  17. Ding, Q., et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 12 (4), 393-394 (2013).
  18. Gaj, T., Gersbach, C. S., Barbas, T. A. L. E. N. ZFN, TALEN, CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology. 31 (7), 397-405 (2013).
  19. Joung, J. K., Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology. 14 (1), 49-55 (2013).
  20. Yang, H., et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 154 (6), 1370-1379 (2013).
  21. Mali, P., et al. RNA-guided human genome engineering via Cas9. Science. 339 (6121), 823-826 (2013).
  22. Laflamme, M. A., et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature. biotechnology. 25 (9), 1015-1024 (2007).
  23. Burridge, P. W., et al. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PloS One. 6 (4), e18293 (2011).
  24. Kouskoff, V., Lacaud, G., Schwantz, S., Fehling, H. J., Keller, G. Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America. 102 (37), 13170-13175 (2005).
  25. Xu, X. Q., et al. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation: Research in Biological Diversity. 76 (9), 958-970 (2008).
  26. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America. 109 (27), E1848-1857 (2012).
  27. Bizy, A., et al. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes. Stem Cell Research. 11 (3), 1335-1347 (2013).

Play Video

Cite This Article
Lei, I. L., Bu, L., Wang, Z. Derivation of Cardiac Progenitor Cells from Embryonic Stem Cells. J. Vis. Exp. (95), e52047, doi:10.3791/52047 (2015).

View Video