Summary

Genetisk Barcoding med fluorescerende proteiner for Multipleksede Applications

Published: April 14, 2015
doi:

Summary

Since the discovery of the green fluorescent protein gene, fluorescent proteins have impacted molecular cell biology. This protocol describes how expression of distinct fluorescent proteins through genetic engineering is used for barcoding individual cells. The procedure enables tracking distinct populations in a cell mixture, which is ideal for multiplexed applications.

Abstract

Fluorescent proteins, fluorescent dyes and fluorophores in general have revolutionized the field of molecular cell biology. In particular, the discovery of fluorescent proteins and their genes have enabled the engineering of protein fusions for localization, the analysis of transcriptional activation and translation of proteins of interest, or the general tracking of individual cells and cell populations. The use of fluorescent protein genes in combination with retroviral technology has further allowed the expression of these proteins in mammalian cells in a stable and reliable manner. Shown here is how one can utilize these genes to give cells within a population of cells their own biosignature. As the biosignature is achieved with retroviral technology, cells are barcoded ´indefinitely´. As such, they can be individually tracked within a mixture of barcoded cells and utilized in more complex biological applications. The tracking of distinct populations in a mixture of cells is ideal for multiplexed applications such as discovery of drugs against a multitude of targets or the activation profile of different promoters. The protocol describes how to elegantly develop and amplify barcoded mammalian cells with distinct genetic fluorescent markers, and how to use several markers at once or one marker at different intensities. Finally, the protocol describes how the cells can be further utilized in combination with cell-based assays to increase the power of analysis through multiplexing.

Introduction

Teknologier som fluorescens spektroskopi, fluorescens mikroskopi og flowcytometri, alle er afhængige af fluorescens, en ejendom i vid udstrækning udnyttet i biokemiske, biomedicinske, og kemiske applikationer. Fluorescens, enten iboende eller gennem mærkning, er blevet udnyttet til analyse af protein udtryk mønstre og profiler, celle skæbne, protein interaktioner og biologiske funktioner 1-9, og gennem fluorescens / Förster resonansenergioverførsel til påvisning af biomolekylære interaktioner og konformationsændringer 10-13. Da isoleringen af Aequorea victoria-grønt fluorescerende protein (GFP) 14 opdagelsen af naturligt forekommende fluorescerende proteiner fra andre cnidarianer, især koraller, har i høj grad øget antallet af eksisterende fluorescerende proteiner med skelnes excitation / emission spektre. Disse, sammen med indførelsen af mutationer i deres gener 15-19, have yderligere udvidet mulighederne, opnåelse af et ægte palet af fluorescerende proteiner til rådighed for forskere, der udnytter mikroskopi, flowcytometri og andre fluorescens-baserede teknologier til deres forskning.

Sideløbende, selv uafhængigt af udviklingen af retrovirale teknologi har drastisk lettet stabil ekspression af ektopisk genetisk information i pattedyrceller 20-23. Det er således ikke overraskende, at denne teknologi er blevet anvendt til at overføre gener af fluorescerende proteiner i en bred række af celletyper og væv 24-28 eller til produktion af transgene dyr 29-31. Efter arten af retrovira, er den genetiske information af ektopisk fluorescerende protein indføres i genomet af cellen 32, og cellen bliver fluorescerende `for ever'. Denne egenskab har gjort sporing af celle skæbne, eller en enkelt celle inden for en population af celler. Den nu fluorescerende celle har således Acquirød sin egen Biosignatur og kan defineres som Barcoded. Dens unikke Biosignatur identificerer det fra andre celler, og vigtigere, adskiller den fra celler genetisk manipulerede til at udtrykke forskellige fluorescerende proteiner med skelnes absorption / emission spektre. Biologiske applikationer såsom sporing af omprogrammering faktorer mod pluripotens 33, analyse af inde i kernen faktorer til belysning af nucleolar lokalisering 34, opførelsen af fluorescerende reporterplasmider for transkriptionelle studier 35 eller den genetiske mærkning af neuroner til studiet af neuronal netværksarkitektur 36 er kun fire eksempler på de mange, der har udnyttet forskellige fluorescerende protein gener for den samme forsøgsopstilling.

Flowcytometri er bredt anvendt til analyse af biologiske processer på enkelt celle niveau, såsom genekspression, cellecyklus, apoptose og signalering via phosphorylation 37-43 .Den stabil ekspression af fluorescerende protein-gener i mammale celler er yderligere forbedret anvendeligheden af flowcytometri for celleanalyse 38,44 og ligand-receptor-interaktioner 45. Øget kapacitet har tilladt flowcytometri bliver en almindeligt anvendt metode til high-throughput og med højt indhold screening 46. På trods af den nu udvidet antal fluorometre og robotter teknologier, der kan par pladelæser systemer, billedbehandling og flowcytometri, synes der at være en mangel i eksperimentel design, der kan udnytte og passe disse forbedrede teknologiske muligheder.

Hurtig, pålidelig, enkle og robuste cellebaserede metoder drastisk nødvendige for multiplex applikationer, som yderligere forstærker high-throughput kapacitet. Dette er især tilfældet inden for drug discovery hvor engineering cellebaserede assays i et multiplekset format kan øge kraften i high-throughput screening 39,47-50 </sup>. Multiplexing, da det muliggør samtidige analyser i en prøve, forbedrer yderligere højt gennemløb kapaciteter 51-54. Fluorescent genetisk barcoding ikke kun giver mulighed for elegant multiplexing, men også, når manipuleret, omgår behovet for tidskrævende protokoller, reducerer omkostningerne ledsaget med antistoffer, perler og pletter 39,52,55, og kan reducere antallet af skærme, der kræves for høj throughput applikationer. Vi har for nylig beskrevet, hvordan retroviral teknologi kan forbedre multiplexing gennem fluorescerende genetiske stregkoder for biologiske anvendelser, ved at udtrykke et assay tidligere udviklet til at overvåge HIV-1-protease aktivitet 56,57 med forskellige klinisk fremherskende varianter 58. Metoden forklares i en mere beskrivende måde med fokus på, hvordan du vælger og forstærke genetisk fluorescerende stregkodede celler og hvordan man producerer paneler af klonpopulationer udtrykker forskellige fluorescerende proteiner og / eller forskellige fluorescens intensiterne. Paneler af cellepopulationer skelnes baseret på deres fluorescerende egenskaber forbedre multipleksede kapaciteter, som yderligere kan udnyttes i kombination med cellebaserede assays, der tackle forskellige biologiske spørgsmål. Protokollen beskriver også, hvordan at konstruere et panel af stregkodede celler, der bærer en af de cellebaserede assays, der tidligere er udviklet i laboratoriet, som eksempel 59. Denne protokol er således ikke til formål at vise veletablerede retroviral / lentiviral teknologi for genoverførsel, værdien af fluorescerende proteiner eller anvendelser af flowcytometri 60,48, men snarere for at vise styrke magt kombinere tre for multiplex applikationer.

Protocol

1. Fremstilling af pattedyrsceller, Viral Produktion og transduktion for Genetisk Barcoding Plate 2,5 x 10 6 adhærente celler i en 10 cm plade (eller ca. 50-60% konfluens) en dag før transfektion i Dulbeccos modificerede Eagle medium (DMEM) med 10% føtalt kalveserum (FCS). For retroviral brug produktionsforpakning cellelinie af valg, såsom Phoenix-GP (en slags gave fra Gary Nolan, Stanford University). BEMÆRK: pakkende cellelinie stabilt udtrykker gag og pol proteiner til retroviral par…

Representative Results

Multiplexing fluorescerende genetisk barkode celler med henblik på biologiske anvendelser kan kun opnås, når de enkelte klonpopulationer er blevet genereret. Multiplexing er mest effektiv, når stregkodede befolkninger har klare tydelige fluorescerende egenskaber med minimal spektral overlapning. Den i figur 1 viste med klonale populationer af mammale SupT1 celler eksempel illustrerer, at stregkodede celler med mCherry og cyan fluorescerende protein (CFP), kan let analyseres samtidigt uden at miste d…

Discussion

Her to veletablerede procedurer er blevet kombineret; genteknologi gennem retroviral teknologi og detektering af fluorescerende proteiner anvender flowcytometri. Fluorescerende protein-baseret genetisk stregkoder til fremstilling af unikke cellelinjer tilvejebringer en robust og enkel måde for multipleksede applikationer. Generering gensplejsede stregkodede celler gennem retroviral teknologi, er i første omgang en langvarig proces, men gør det muligt at opnå, når de er etableret, en pålidelig og stabil kilde til c…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Vi vil gerne takke Dr. Garry Nolan fra Stanford University for at give Phoenix GP pakkecellelinien til produktion af retrovirale partikler. Vi takker Dr. Roger Tsien ved University of California i San Diego for at give TD Tomat. Vi vil også gerne takke San Diego State University Flowcytometri Core Facility for deres service og hjælp.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
10mL syringes BD   309604 used for filtering the virus
0.45µm plytetrafluoroethylen filter pall corporation 4219 used for filtering the virus
DMEM (Dulbecco's Modified Eagle Medium) Corning 45000-304 cell growth media for HEK 293T cells
PEI (Polyethylenimine) poly sciences 23966-2  2mg/mL concentration used
Hanging bucket centrifuge (refrigerated) Eppendorf  5805 000.017 used for spin infection
PBS (phosphate buffered saline) Corning 21-040-CV used for washing of cells
Polybrene (hexadimethreen bromide) Sigma-Aldrich 107689 Used to increase viral infection efficiency.  Used at a 5µg/mL concentration. 
FACSAria BD Biosciences instrument used for sorting cell populations
FACSCanto BD Biosciences instrument used for cell analysis
Phoenix-GP Gift from Gary Nolan cell line used to produced retroviral particles
Fetal calf serum Mediatech MT35015CV  used for cell growth and sorting
 SupT1 cells ATCC CRL-1942 Human T lymphoblasts
HEK 293T cells ATCC CRL-11268 Human Embryonic Kidney cells that also contain the SV40 large T-antigen
RPMI 1640 Corning 10-040-CV cell growth media for SupT1 cells

References

  1. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., Prasher, D. C. Green fluorescent protein as a marker for gene expression.Science. 263 (5148), 802-805 (1994).
  2. Misteli, T., Caceres, J. F., Spector, D. L. The dynamics of a pre-mRNA splicing factor in living cells. Nature. 387 (6632), 523-527 (1997).
  3. Godwin, A. R., Stadler, H. S., Nakamura, K., Capecchi, M. R. Detection of targeted GFP-Hox gene fusions during mouse embryogenesis. Proc Natl Acad Sci U S A. 95 (22), 13042-13047 (1998).
  4. Irish, J. M., et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell. 118 (2), 217-228 (2004).
  5. Natarajan, L., Jackson, B. M., Szyleyko, E., Eisenmann, D. M. Identification of evolutionarily conserved promoter elements and amino acids required for function of the C. elegans beta-catenin homolog BAR-1. Dev Biol. 272 (2), 536-557 (2004).
  6. Tumbar, T., et al. Defining the epithelial stem cell niche in skin.Science. 303 (5656), 359-363 (2004).
  7. Valencia-Burton, M., et al. Spatiotemporal patterns and transcription kinetics of induced RNA in single bacterial cells.Proc. Natl Acad Sci U S A. 106 (38), 16399-16404 (2009).
  8. Mahmoud, L., et al. Green fluorescent protein reporter system with transcriptional sequence heterogeneity for monitoring the interferon response.J Virol. 85 (18), 9268-9275 (2011).
  9. Saunders, M. J., et al. Fluorogen activating proteins in flow cytometry for the study of surface molecules and receptors.Methods. 57 (3), 308-317 (2012).
  10. Wang, Y. L., Taylor, D. L. Probing the dynamic equilibrium of actin polymerization by fluorescence energy transfer. Cell. 27 (3 Pt 2), 429-436 (1981).
  11. He, L., et al. Flow cytometric measurement of fluorescence (Forster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. Cytometry A. 53 (1), 39-54 (2003).
  12. Stephens, D. J., Allan, V. J. Light microscopy techniques for live cell imaging. Science. 300 (5616), 82-86 (2003).
  13. Clayton, A. H., et al. Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis. J Biol Chem. 280 (34), 30392-30399 (2005).
  14. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein.Gene. 111 (2), 229-233 (1992).
  15. Heim, R., Cubitt, A. B., Tsien, R. Y. Improved green fluorescence. Nature. 373 (6516), 663-664 (1995).
  16. Shaner, N. C., et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 22 (12), 1567-1572 (2004).
  17. Ai, H. W., Shaner, N. C., Cheng, Z., Tsien, R. Y., Campbell, R. E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins.Biochemistry. 46 (20), 5904-5910 (2007).
  18. Mishin, A. S., et al. The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Biochemistry. 47 (16), 4666-4673 (2008).
  19. Tsien, R. Y. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew Chem Int Ed Engl. 48 (31), 5612-5626 (2009).
  20. Naldini, L., et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 272 (5259), 263-267 (1996).
  21. Klages, N., Zufferey, R., Trono, D. A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther. 2 (2), 170-176 (2000).
  22. Lai, Z., Brady, R. O. Gene transfer into the central nervous system in vivo using a recombinanat lentivirus vector. J Neurosci Res. 67 (3), 363-371 (2002).
  23. Wolkowicz, R., Nolan, G. P., Curran, M. A. Lentiviral vectors for the delivery of DNA into mammalian cells. Methods Mol Biol. 246, 391-411 (2004).
  24. Grignani, F., et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res. 58 (1), 14-19 (1998).
  25. Ramezani, A., Hawley, T. S., Hawley, R. G. Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol Ther. 2 (5), 458-469 (2000).
  26. Roddie, P. H., Paterson, T., Turner, M. L. Gene transfer to primary acute myeloid leukaemia blasts and myeloid leukaemia cell lines. Cytokines Cell Mol Ther. 6 (3), 127-134 (2000).
  27. Zhang, X. Y., et al. Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther. 5 (5 Pt 1), 555-565 (2002).
  28. Rossi, G. R., Mautino, M. R., Morgan, R. A. High-efficiency lentiviral vector-mediated gene transfer into murine macrophages and activated splenic B lymphocytes. Hum Gene Ther. 14 (4), 385-391 (2003).
  29. Hamra, F. K., et al. Production of transgenic rats by lentiviral transduction of male germ-line stem cells.Proc. Natl Acad Sci U S A. 99 (23), 14931-14936 (2002).
  30. Chan, A. W., Chong, K. Y., Martinovich, C., Simerly, C., Schatten, G. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science. 291 (5502), 309-3012 (2001).
  31. Linney, E., Hardison, N. L., Lonze, B. E., Lyons, S., DiNapoli, L. Transgene expression in zebrafish: A comparison of retroviral-vector and DNA-injection approaches. Dev Biol. 213 (1), 207-2016 (1999).
  32. Engelman, A., Mizuuchi, K., Craigie, R. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell. 67 (6), 1211-1221 (1991).
  33. Tiemann, U., et al. Optimal reprogramming factor stoichiometry increases colony numbers and affects molecular characteristics of murine induced pluripotent stem cells. Cytometry A. 79 (6), 426-435 (2011).
  34. Leung, A. K., Lamond, A. I. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. J Cell Biol. 157 (4), 615-629 (2002).
  35. Malone, C. L., et al. Fluorescent reporters for Staphylococcus aureus. J Microbiol Methods. 77 (3), 251-260 (2009).
  36. Livet, J., et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature. 450 (7166), 56-62 (2007).
  37. Krutzik, P. O., Nolan, G. P. Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A. 55 (2), 61-70 (2003).
  38. Violin, J. D., Zhang, J., Tsien, R. Y., Newton, A. C. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase. C.J Cell Biol. 161 (5), 899-909 (2003).
  39. Krutzik, P. O., Nolan, G. P. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods. 3 (5), 361-368 (2006).
  40. Edwards, B. S., Ivnitski-Steele, I., Young, S. M., Salas, V. M., Sklar, L. A. High-throughput cytotoxicity screening by propidium iodide staining. Curr Protoc Cytomt. 9 (Unit 9 24), (2007).
  41. Schulz, K. R., Danna, E. A., Krutzik, P. O., Nolan, G. P. Single-cell phospho-protein analysis by flow cytometry. Curr Protoc Immunol. 8 (Unit 8 17), (2007).
  42. Lu, R., Neff, N. F., Quake, S. R., Weissman, I. L. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol. 29 (10), 928-933 (2011).
  43. Grant, G. D., et al. Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control. Mol Biol Cell. 23 (16), 3079-3093 (2012).
  44. Fiering, S. N., et al. Improved FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs. Cytometry. 12 (4), 291-301 (1991).
  45. Fay, S. P., Posner, R. G., Swann, W. N., Sklar, L. A. Real-time analysis of the assembly of ligand, receptor, and G protein by quantitative fluorescence flow cytometry. Biochemistry. 30 (20), 5066-5075 (1991).
  46. Edwards, B. S., Oprea, T., Prossnitz, E. R., Sklar, L. A. Flow cytometry for high-throughput, high-content screening. Curr Opin Chem Biol. 8 (4), 392-398 (2004).
  47. Durick, K., Negulescu, P. Cellular biosensors for drug discovery. Biosens Bioelectron. 16 (7-8), 587-592 (2001).
  48. Edwards, B. S., et al. High-throughput flow cytometry for drug discovery. Expert Opin Drug Discov. 2 (5), 685-696 (2007).
  49. Sklar, L. A., Carter, M. B., Edwards, B. S. Flow cytometry for drug discovery, receptor pharmacology and high-throughput screening. Curr Opin Pharmacol. 7 (5), 527-534 (2007).
  50. Curpan, R. F., et al. High-throughput screen for the chemical inhibitors of antiapoptotic bcl-2 family proteins by multiplex flow cytometry. Assay Drug Dev Technol. 9 (5), 465-474 (2011).
  51. Bradford, J. A., Buller, G., Suter, M., Ignatius, M., Beechem, J. M. Fluorescence-intensity multiplexing: simultaneous seven-marker, two-color immunophenotyping using flow cytometry. Cytometry A. 61 (2), 142-152 (2004).
  52. Krutzik, P. O., Clutter, M. R., Trejo, A., Nolan, G. P. Fluorescent cell barcoding for multiplex flow cytometry. Curr Protoc Cytom. 6 (Unit 6 31), (2011).
  53. Surviladze, Z., Young, S. M., Sklar, L. A. High-throughput flow cytometry bead-based multiplex assay for identification of Rho GTPase inhibitors. Methods Mol Biol. 827, 253-270 (2012).
  54. Sukhdeo, K., et al. Multiplex flow cytometry barcoding and antibody arrays identify surface antigen profiles of primary and metastatic colon cancer cell lines. PLoS One. 8 (1), e53015 (2013).
  55. Vignali, D. A. Multiplexed particle-based flow cytometric assays. J Immunol Methods. 342 (1-2), 243-255 (2000).
  56. Hilton, B. J., Wolkowicz, R. An assay to monitor HIV-1 protease activity for the identification of novel inhibitors in T-cells. PLoS One. 5 (6), e10940 (2010).
  57. Rajakuberan, C., Hilton, B. J., Wolkowicz, R. Protocol for a mammalian cell-based assay for monitoring the HIV-1 protease activity. Methods Mol Biol. 903, 393-405 (2012).
  58. Smurthwaite, C. A., et al. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry. Cytometry A. 85 (1), 105-113 (2014).
  59. Stolp, Z. D., et al. A Novel Two-Tag System for Monitoring Transport and Cleavage through the Classical Secretory Pathway – Adaptation to HIV Envelope Processing. PLoS One. 8 (6), e68835 (2013).
  60. Schwartz, A., et al. Standardizing flow cytometry: a classification system of fluorescence standards used for flow cytometry. Cytometry. 33 (2), 106-114 (1998).

Play Video

Cite This Article
Smurthwaite, C. A., Williams, W., Fetsko, A., Abbadessa, D., Stolp, Z. D., Reed, C. W., Dharmawan, A., Wolkowicz, R. Genetic Barcoding with Fluorescent Proteins for Multiplexed Applications. J. Vis. Exp. (98), e52452, doi:10.3791/52452 (2015).

View Video