Summary

修改一个Colliculo - 丘脑鼠脑切片,收纳室部件的3-D打印和多尺度光学成像

Published: September 18, 2015
doi:

Summary

利用多角度切割鼠标小狗大脑,我们在提高先前描述的急性脑切片捕捉之间最重要的听觉脑和前脑结构的连接。

Abstract

The ability of the brain to process sensory information relies on both ascending and descending sets of projections. Until recently, the only way to study these two systems and how they interact has been with the use of in vivo preparations. Major advances have been made with acute brain slices containing the thalamocortical and cortico-thalamic pathways in the somatosensory, visual, and auditory systems. With key refinements to our recent modification of the auditory thalamocortical slice1, we are able to more reliably capture the projections between most of the major auditory midbrain and forebrain structures: the inferior colliculus (IC), medial geniculate body (MGB), thalamic reticular nucleus (TRN), and the auditory cortex (AC). With portions of all these connections retained, we are able to answer detailed questions that complement the questions that can be answered with in vivo preparations. The use of flavoprotein autofluorescence imaging enables us to rapidly assess connectivity in any given slice and guide the ensuing experiment. Using this slice in conjunction with recording and imaging techniques, we are now better equipped to understand how information processing occurs at each point in the auditory forebrain as information ascends to the cortex, and the impact of descending cortical modulation. 3-D printing to build slice chamber components permits double-sided perfusion and broad access to networks within the slice and maintains the widespread connections key to fully utilizing this preparation.

Introduction

在听觉系统,虽然有感官周边和下丘之间的信息实质性加工,有相当大的附加的处理之前到达听觉皮层。我们所知甚少有关如何处理已完成,因此一些关于这种转变让大脑解释传入的感觉信息。除嗅觉,每个感官具有与最初被中继高保真其中下降的信号上升到皮质外设信号非常相似的组织。皮质然后发送突起到下部结构来进一步调节所述输入信息。这种复杂的系统进行了研究,以各种方式在体内以及在一些体外制剂。在前者中,所有的连接都完好,使研究者探测任何组连接,同时控制感觉输入和测量输出在任何给定的区域中。采用这种方法,很少有无法控制的种类繁多的其他投入,包括其他感觉输入,觉醒和重视,以一种强烈的复杂的输出便出现在体外 ,大脑切片被切断捕捉到一个单套的预测,或者两个相连的脑区,这使研究人员,以刺激和评估各种传入或脑区。这些通常是要么丘脑皮层或tectothalamic片,其中任一输入到丘脑或丘脑和其输出到皮层被保留2-5。这些制剂允许各种各样的药理,电气和光遗传学操作。然而,只有两个脑区,它们主要评估的信息的传送,并且缺乏以评估信息的改造,因为它通过丘脑的能力。另外,网状丘脑突起,其可在关注调制发挥作用6-9是公关ESENT在此片。在这里,我们展示的改进在我们之前的准备1,允许各种投入到丘脑研究者控制给予的丘脑盖茨和过滤信息如何以独特的视角。我们夫妇这种新颖的切片准备与黄素蛋白自发荧光成像来评估片连接和大规模活化分析,在丘脑神经元群体分析钙成像,和单细胞记录以测量的各种输入上的单细胞水平的影响。

为了协助维护这些应用广泛的联系,我们还开发了一些垂直切片锚(又名“竖琴”)的修改举行的脑切片的地方,桥梁,以提升切片增强灌注。竖琴被设计成修改马蹄形以包围切片,并允许可定制的连接点为竖琴字符串。三字符串附,使得i)一种位于沿水平方向内侧边缘的切片,ⅱ)从IC到AC的尾部边缘的尾部边缘上的一个延伸,并且iii)一种从斜内侧缘的片的延伸到的区域喙到AC( 见图 1A)。小凹口在帧胶合(与氰基丙烯酸酯胶)的琴弦允许有减少量的压力中的片上,以帮助保持片完整性的(参见图1B)。通过使用三维印刷,我们能够定制设计竖琴我们独特的规格,以及其允许的上方和下方的组织的人工脑脊液(ACSF)理想的流量桥。这也保持着大面积的光穿透组织的膜片钳电。

Protocol

所有的程序都在伊利诺伊大学批准的机构动物护理和使用委员会。所有动物饲养在批准的实验室动物护理的认可美国协会动物护理设施。每试图尽量减少所使用的动物的数量,并减少痛苦在研究的所有阶段。 1.准备并清除脑小鼠切片准备灌注和切片孵化。 大约切片前30分钟,制备高蔗糖裁剪解决方案和低钙学联的前记录或成像切片的培养。 奠定了所有必?…

Representative Results

在P15小鼠获得colliculo-丘脑皮层小鼠脑切片的一个例子示于图2中 ,理想的切片将包含四个主要脑和前脑听觉结构集成电路,MGB,TRN,和AC,这些当IC被激发的所有激活(图2A)。使用傅立叶分析,光谱功率的测量是在电刺激频率,以显示活性为周期性和夹带在刺激频率10连接的大脑区域。该协议允许对信息尤其是在丘脑的脑和皮质之间的关系上升流的研究。而在生?…

Discussion

This protocol describes improvements upon a previously described colliculo-thalamocortical brain slice in p12-20 mouse to study information flow in the auditory system1. This method has a number of advantages over other, similar, brain slice preparations by retaining connections between more brain areas in a single slice, which gives investigators new tools to understand the interaction and interplay between auditory nuclei in the forebrain. There have been a few key modifications in this protocol, compared to…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was partially supported by National Institute of Deafness and Other Communications Disorders Awards R03-DC-012125 to D. A. Llano and F31-DC-013501 to B. J. Slater as well as the Carver Foundation.

The authors would like to thank Jason MacLean and Matthew Banks for technical advice with calcium imaging.

Materials

High sucrose cutting solution in mM: 206 sucrose, 10.0 MgCl2, 11.0 glucose, 1.25 NaH2PO4, 26 NaHCO3, 0.5 CaCl2, 2.5 KCl, pH 7.4
Low calcium aCSF in mM: 126 NaCl, 3.0 MgCl2, 10.0 glucose, 1.25 NaH2PO4, 26 NaHCO3, 1.0 CaCl2, 2.5 KCl, pH 7.4
aCSF in mM: 126 NaCl, 2.0 MgCl2, 10.0 glucose, 1.25 NaH2PO4, 26 NaHCO3, 2.0 CaCl2, 2.5 KCl, pH 7.4
Stimulus Isolator World Precision Instruments A360
DMSO Life Technologies D12345 Lot: 1572C502
Fura-2AM Life Technologies F1201 Lot: 144912
Pluronic F-127 Life Technologies P3000MP Lot: 1499369
Large culture dish Fisherbrand 08-757-13 100x15mm culture dish
Small culture dish Falcon 353001 35x10mm culture dish
Raised culture membrane Millicell PICMORG50 Used to maintain oxygenated fluid perfusion on both sides of slice.
Flavoprotein imaging fluorescence cube Olympus UMNIB 470–490 nm excitation, 505 nm dichroic, 515 nm emission long pass.  We have found that virtually any green fluorescence protein filter cube will work here.
Calcium imaging fluorescence cube Omega Optical BX-18 XF1005 365nm exitation, XF2001 400nm dichroic, XF3080 510nm emission
Agar for blocking brain 3% by weight in water
Viper si Stereo Lithography Apparatus 3D Systems

References

  1. Llano, D. A., Slater, B. J., Lesicko, A. M., Stebbings, K. A. An auditory colliculothalamocortical brain slice preparation in mouse. J. Neurosci. 111, 197-207 (2014).
  2. Agmon, A., Connors, B. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuro. 41, 365-379 (1991).
  3. Cruikshank, S. J., Rose, H. J., Metherate, R. Auditory Thalamocortical Synaptic Transmission In Vitro. J Neurophysiol. 87, 361-384 (2002).
  4. Lee, C. C., Sherman, S. M. Topography and physiology of ascending streams in the auditory tectothalamic pathway. PNAS. 107, 372-377 (2010).
  5. MacLean, J. N., Fenstermaker, V., Watson, B. O., Yuste, R. A visual thalamocortical slice. Nat meth. 3, 129-134 (2006).
  6. Crabtree, J. W., Isaac, J. T. New intrathalamic pathways allowing modality-related and cross-modality switching in the dorsal thalamus. J. Neurosci. 22, 8754-8761 (2002).
  7. McAlonan, K., Cavanaugh, J., Wurtz, R. H. Attentional Modulation of Thalamic Reticular Neurons. J. Neurosci. 26, 4444-4450 (2006).
  8. Weese, G. D., Phillips, J. M., Brown, V. J. Attentional Orienting Is Impaired by Unilateral Lesions of the Thalamic Reticular Nucleus in the Rat. J. Neurosci. 19, 10135-10139 (1999).
  9. Zikopoulos, B., Barbas, H. Prefrontal Projections to the Thalamic Reticular Nucleus form a Unique Circuit for Attentional Mechanisms. J. Neurosci. 26, 7348-7361 (2006).
  10. Kalatsky, V. A., Stryker, M. P. New Paradigm for Optical Imaging: Temporally Encoded Maps of Intrinsic Signal. Neuron. 38, 529-545 (2003).
  11. Llano, D. A., Turner, J., Caspary, D. M. Diminished cortical inhibition in an aging mouse model of chronic tinnitus. J. Neurosci. 32, 16141-16148 (2012).
  12. Ehret, G. Behavioural studies on auditory development in mammals in relation to higher nervous system functioning. Acta otolaryngol. 99, 31-40 (1985).
  13. Mikaelian, D., Ruben, R. Development of hearing in the normal CBA-J mouse: correlation of physiological observations with behavioral responses and with cochlear anatomy. Acta. 59, 451-461 (1965).

Play Video

Cite This Article
Slater, B. J., Fan, A. Y., Stebbings, K. A., Saif, M. T. A., Llano, D. A. Modification of a Colliculo-thalamocortical Mouse Brain Slice, Incorporating 3-D printing of Chamber Components and Multi-scale Optical Imaging. J. Vis. Exp. (103), e53067, doi:10.3791/53067 (2015).

View Video