Summary

Analyse af Udvikling Tooth Kim innervation Brug Mikrofluid Co-kultur Devices

Published: August 14, 2015
doi:

Summary

Co-cultures represent a valuable method to study the interactions between nerves and target tissues and organs. Microfluidic systems allow co-culturing ganglia and whole developing organs or tissues in different culture media, thus representing a valuable tool for the in vitro study of the crosstalk between neurons and their targets.

Abstract

Innervation spiller en central rolle i udviklingen, homeostase og regenerering af organer og væv. Imidlertid er mekanismerne bag disse fænomener ikke godt forstået endnu. Især er den rolle, innervation i tand udvikling og regeneration forsømt.

Adskillige in vivo-undersøgelser har givet vigtige oplysninger om de mønstre af innervation af dental væv under udviklings- og reparation processer i forskellige dyremodeller. Men de fleste af disse fremgangsmåder ikke er optimale til at fremhæve den molekylære basis for interaktionerne mellem nervefibre og målorganer og væv.

Co-kulturer udgør en værdifuld metode til at undersøge og manipulere samspillet mellem nervefibre og tænder på en kontrolleret og isoleret miljø. I de sidste årtier har konventionelle co-kulturer under anvendelse af samme dyrkningsmedium udført i meget korte perioder (f.eks, to dage)at undersøge de attraktive eller frastødende effekter af at udvikle mundtlige og dental væv på sensoriske nervefibre. Imidlertid er udvidelse af kulturen periode, der kræves for at undersøge virkningerne af innervation på tanden morfogenese og cytodifferentiation.

Mikrofluidiksystemer tillader co-kulturer af neuroner og forskellige celletyper i deres passende kulturmedier. Vi har for nylig påvist, at trigeminale ganglier (TG) og tænder er i stand til at overleve i en lang periode, hvor co-dyrket i mikrofluide anordninger, og at de opretholder i disse betingelser samme innervation mønster, at de viser in vivo.

På dette grundlag beskriver vi, hvordan at isolere og co-kultur udvikler trigeminusganglier og tand bakterier i en mikrofluid co-kultur system.This protokol beskriver en enkel og fleksibel måde at co-kultur ganglier / nerver og målvæv og studere roller specifikke molekyler på sådanne interaktioner i et controlled og isoleret miljø.

Introduction

Innervation spiller en central rolle i udviklingen, homeostase og regenerering af organer og væv 1,2. Endvidere er innervation involveret i reguleringen af stamcelleproliferation, mobilisering og differentiering 3-5. Faktisk har de seneste undersøgelser realiseret i væv af orofacial kompleks vist, at parasympatiske nerver er nødvendige for epitelial stamceller funktion under udvikling og revitalisering af spytkirtlerne 6,7. Ligeledes er det blevet vist, at innervation er nødvendigt for udviklingen og vedligeholdelsen af smagsløgene 8-11. Det er således vigtigt at analysere de endnu forsømte roller innervation i udviklingen af ​​andre vigtige orofaciale organer og væv, såsom tænder.

På trods af den rige innervation af voksne tænder, og i modsætning til alle andre organer og væv i kroppen, udvikping tænder begynder at blive innerveret tidligst postnatale faser. Tænder udvikles som et resultat af sekventielle og gensidige interaktioner mellem den mundtlige ectoderm og kraniel neurale crest-afledte mesenchyme. Disse interaktioner giver anledning til epitel-afledte ameloblaster og mesenchym-afledte odontoblasts, der er ansvarlige for dannelsen af emalje og dentin, henholdsvis 12. Sensoriske nerver fra trigeminusganglier og sympatiske nerver fra den overlegne cervikale ganglier innerverer den voksne tænder 13-15. Under embryogenese, nervefibre udgår fra trigeminale ganglier projekt over for udviklingslandene tand kim, og gradvis omgiver dem, men de ikke trænge ind i dentale papil mesenkym 13. Nervefibre ind i dental pulp mesenchym på mere avancerede udviklingsstadier, der korrelerer med odontoblast differentiering og dentin matrixdeponering 16. Dental pulp innervation er gratiseted snart efter tandfrembrud i mundhulen 13. Tidligere undersøgelser har vist, at forskellige semaphorins og neurotrophiner er involveret i reguleringen af innervation under odontogenese 16-19. Tidligere undersøgelser har klart vist, at innervation er en forudsætning for tand dannelse i fishes 20. Nyere undersøgelser har vist, at homeostase af dental mesenchym stamceller i mus fortænder reguleres af sensoriske nerver via sekretion af sonisk pindsvin (Shh) 21. Ikke desto mindre rolle innervation i tand initiering, udvikling og regeneration er stadig meget kontroversielt i pattedyr 22-24.

En overflod af in vivo studier har givet vigtige oplysninger om de mønstre af innervation af dental væv under udviklings- og reparation processer forskellige dyremodeller 13,25,26. Men de fleste af disse hensigtsømhed ikke er optimale til at fremhæve den molekylære basis for samspillet mellem nervefibre og målorganer og væv. Co-kulturer udgør en værdifuld metode til at undersøge og manipulere samspillet mellem nervefibre og tænder på en kontrolleret og isoleret miljø 26-29. Samtidig, co-dyrkning er underlagt forskellige tekniske justeringer. For eksempel, nerver og specifikke dental væv (f.eks dental pulp, dental follicle, dental epitel) kræver ofte forskellige kulturmedier for at sikre væv overlevelse for lange perioder 30-32.

I de sidste årtier har konventionelle co-kulturer ved hjælp af den samme dyrkningsmedium udført i meget korte perioder (f.eks to dage) for at undersøge de attraktive eller frastødende effekter af at udvikle mundtlige og dental væv på sensoriske nervefibre 27-29.Imidlertid er udvidelse af kulturen periode forpligtet til at undersøge virkningerne af innervation på tanden morfogenese og cytodifferentiation, og studere dynamikken i nervefibre forgrening inden målorganer. Derfor ville ikke-sammenhængende co-kulturer være mere passende at foretage undersøgelser neuronale-dental væv interaktioner.

Mikrofluidiksystemer tillader co-kulturer af neuroner og forskellige celletyper i deres passende kulturmedier. I disse indretninger er dental væv og neuroner adskilt i forskellige rum, samtidig med at væksten af axoner fra de neurale cellelegemer gennem mikrokanaler mod rum indeholdende deres målvæv 33. Mikrofluidenheder er allerede blevet brugt til at studere samspillet mellem neuroner og mikroglia 34,35 samt celle til celle interaktioner i kræft og neovaskularisering 35. Desuden er disse systemer blevet anvendt til at undersøge samspillet mellem dorsal rodganglier og osteoblaster 36.

Vi har for nylig påvist, at trigeminale ganglier (TG) og tænder er i stand til at overleve i lange perioder, hvor co-dyrket i mikrovæskeanordninger 37. Desuden har vi påvist, at tænderne fra forskellige udviklingsstadier opretholde disse in vitro betingelser de samme frastødende eller attraktive virkninger på trigeminus innervation, at de viser in vivo 37. Denne protokol indeholder oplysninger om en enkel, kraftfuld og fleksibel måde at co-kultur ganglier / nerver og målvæv og at studere roller specifikke molekyler på sådanne interaktioner i et kontrolleret og isoleret miljø.

Protocol

Alle mus blev opretholdt og håndteres i henhold til den schweiziske dyrevelfærd Law og i overensstemmelse med reglerne i Cantonal Veterinary kontoret, Zürich. 1. Udarbejdelse af Dissektion Materiel, Kultur Media, mikrofluidenheder Autoklave mikro-dissektion pincet og sakse (121 ° C, sterilisering tid: 20 min) og gemme dem i en steril beholder. Sterilisere dækglas (24 mm x 24 mm) ved at inkubere dem i 1 M HCI i 24 timer på en orbital ryster ved 37 ° C. Vaske dem tr…

Representative Results

Disse resultater viser, at isolerede trigeminusganglier kan vokse i et rum af mikrovæskeanordning og desuden, at udviklingen af ​​de isolerede tand bakterier opretholdes i en lang periode i det andet rum af mikrofluidapparatet. Forskellige kulturmedier anvendes i de to rum, og mikrorillerne mellem de to rum tillader udvidelse af axon fra trigeminus ganglion over for udviklingslandene tand bakterier. Figur 3 repræsenterer en visualisering af neurofilament via immunfluorescens 37, i en co…

Discussion

Forrige in vitro studier af tand innervation var baseret på konventionelle co-kulturer af trigeminusganglier og dental væv eller celler 26,28,29. Disse undersøgelser blev udført for at undersøge hovedsagelig de attraktive virkninger af disse celler eller væv på sensoriske axoner 38. Selvom bringe betydelige fremskridt på området, blev en række tekniske spørgsmål rejst. Tooth bakterier begynder at degenerere efter få dages kultur 37. Baseret på disse observationer, …

Disclosures

The authors have nothing to disclose.

Acknowledgements

The work was funded by the University of Zurich. The authors would like to thank Estrela Neto and Dr. Meriem Lamghari for helping in establishing the co-culture conditions.

Materials

AXIS Axon Isolation Devices Millipore AX15010-TC Microchannels of different lenght are available
Laminin Sigma Aldrich L2020
Neurobasal Gibco 21103-049
B27 Gibco 17504
Recombinant Mouse beta-NGF R&D Systems 1156-NG-100 Human and Rat beta-NGF (R&D Systems) are equivalent
DMEM-F12 Gibco 11320-033

References

  1. Pagella, P., Jiménez-Rojo, L., Mitsiadis, T. A. Roles of innervation in developing and regenerating orofacial tissues. Cellular and molecular life sciences : CMLS. 71, 2241-2251 (2014).
  2. Kumar, A., Brockes, J. P. Nerve dependence in tissue, organ, and appendage regeneration. Trends in neurosciences. 35 (11), 691-699 (2012).
  3. Brownell, I., Guevara, E., Bai, C. B., Loomis, C. A., Joyner, A. L. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell stem cell. 8 (5), 552-565 (2011).
  4. Katayama, Y., Battista, M., et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 124 (2), 407-421 (2006).
  5. Fitch, S. R., Kimber, G. M., et al. Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell stem cell. 11 (4), 554-566 (2012).
  6. Knox, S. M., Lombaert, I. M. a., Reed, X., Vitale-Cross, L., Gutkind, J. S., Hoffman, M. P. Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science(New York, N.Y.). 329 (5999), 1645-1647 (2010).
  7. Knox, S. M., Lombaert, I. M. A., et al. Parasympathetic stimulation improves epithelial organ regeneration. Nature communications. 4, 1494 (2013).
  8. Oakley, B., Witt, M. Building sensory receptors on the tongue. Journal of neurocytology. 33 (6), 631-646 (2004).
  9. Oakley, B., Brandemihl, A., Cooper, D., Lau, D., Lawton, A., Zhang, C. The morphogenesis of mouse vallate gustatory epithelium and taste buds requires BDNF-dependent taste neurons. Brain research. Developmental brain research. 105 (1), 85-96 (1998).
  10. Sun, H., Oakley, B. Development of anterior gustatory epithelia in the palate and tongue requires epidermal growth factor receptor. Developmental biology. 242 (1), 31-43 (2002).
  11. Mistretta, C. M., Goosens, K. a., Farinas, I., Reichardt, L. F. Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs. The Journal of comparative neurology. 409 (1), 13-24 (1999).
  12. Mitsiadis, T. a., Graf, D. Cell fate determination during tooth development and regeneration. Birth defects research. Part C, Embryo today reviews. 87 (3), 199-211 (2009).
  13. Mohamed, S. S., Atkinson, M. E. A histological study of the innervation of developing mouse teeth. Journal of anatomy. 136 (Pt 4), 735-749 (1983).
  14. Luukko, K. Immunohistochemical localization of nerve fibres during development of embryonic rat molar using peripherin and protein gene product 9.5 antibodies. Archives of oral biology. 42 (3), 189-195 (1997).
  15. Johnsen, D. Innervation of teeth: qualitative, quantitative, and developmental assessment. Journal of dental research. 64, 555-563 (1985).
  16. Mitsiadis, T. a., Dicou, E., Joffre, A., Magloire, H. Immunohistochemical localization of nerve growth factor (NGF) and NGF receptor (NGF-R) in the developing first molar tooth of the rat. Differentiation; research in biological diversity. 49 (1), 47-61 (1992).
  17. Mitsiadis, T. a., Luukko, K. Neurotrophins in odontogenesis. The International journal of developmental biology. 39 (1), 0214-6282 (1995).
  18. Moe, K., Sijaona, A., Shrestha, A., Kettunen, P., Taniguchi, M., Luukko, K. Semaphorin 3A controls timing and patterning of the dental pulp innervation. Differentiation; research in biological diversity. 84 (5), 371-379 (2012).
  19. Kettunen, P., Løes, S., et al. Coordination of trigeminal axon navigation and patterning with tooth organ formation: epithelial-mesenchymal interactions and epithelial Wnt4 and Tgfbeta1 regulate semaphorin 3a expression in the dental mesenchyme. Development (Cambridge, England). 132 (2), 323-334 (2005).
  20. Tuisku, F., Hildebrand, C. Evidence for a neural influence on tooth germ generation in a polyphyodont species. Developmental biology. 165, 1-9 (1994).
  21. Zhao, H., Feng, J., et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell stem cell. 14 (2), 160-173 (2014).
  22. Kettunen, P., Kvinnsland, H., Luukko, K. Mouse rudimentary diastema tooth primordia are devoid of peripheral nerve fibers. Anatomy and embryology. 205 (3), 187-191 (2002).
  23. Lumsend, A., Buchanan, J. An experimental study of timing and topography of early tooth development in the mouse embryo. Archives of oral biology. , 301-311 (1986).
  24. Kollar, E., Lumsend, A. Tooth morphogenesis: the role of the innervation during induction and pattern formation. Journal de Biologia Buccale. 7 (1), 49-60 (1979).
  25. Luukko, K., Kettunen, P. Coordination of tooth morphogenesis and neuronal development through tissue interactions: lessons from mouse models. Experimental cell research. 325 (2), 72-77 (2014).
  26. Lillesaar, C., Eriksson, C., Johansson, C. S., Fried, K., Hildebrand, C. Tooth pulp tissue promotes neurite outgrowth from rat trigeminal ganglia in vitro. Journal of neurocytology. 28 (8), 663-670 (1999).
  27. Lumsend, A., Davies, A. M. Chemotropic effect of specific target epithelium in the developing mammalian nervous system. Nature. 323 (9), 538-539 (1986).
  28. Lillesaar, C., Fried, K. Neurites from trigeminal ganglion explants grown in vitro are repelled or attracted by tooth-related tissues depending on developmental stage. Neuroscience. 125 (1), 149-161 (2004).
  29. Lillesaar, C., Eriksson, C., Fried, K. Rat tooth pulp cells elicit neurite growth from trigeminal neurones and express mRNAs for neurotrophic factors in vitro. Neuroscience letters. 308 (3), 161-164 (2001).
  30. Petrinovic, M. M., Duncan, C. S., et al. Neuronal Nogo-A regulates neurite fasciculation, branching and extension in the developing nervous system. Development(Cambridge, England). 137 (15), 2539-2550 (2010).
  31. Otsu, K., Fujiwara, N., Harada, H. Odontogenesis. Methods in Molecular Biology. 887, (2012).
  32. Mitsiadis, T. a., Drouin, J. Deletion of the Pitx1 genomic locus affects mandibular tooth morphogenesis and expression of the Barx1 and Tbx1 genes. Developmental biology. 313 (2), 887-896 (2008).
  33. Park, J. W., Vahidi, B., Taylor, A. M., Rhee, S. W., Jeon, N. L. Microfluidic culture platform for neuroscience research. Nature protocols. 1 (4), 2128-2136 (2006).
  34. Hosmane, S., Tegenge, M. A., et al. Toll/interleukin-1 receptor domain-containing adapter inducing interferon-β mediates microglial phagocytosis of degenerating axons. The Journal of neuroscience the official journal of the Society for Neuroscience. 32 (22), 7745-7757 (2012).
  35. Delamarche, E., Tonna, N., Lovchik, R. D., Bianco, F., Matteoli, M. Pharmacology on microfluidics: multimodal analysis for studying celll-cell interaction. Current opinion in pharmacology. 13 (5), 821-828 (2013).
  36. Neto, E., Alves, C. J., et al. Sensory neurons and osteoblasts: close partners in a microfluidic environment. Integrative Biology. , (2014).
  37. Pagella, P., Neto, E., Jiménez-Rojo, L., Lamghari, M., Mitsiadis, T. A. Microfluidics co-culture systems for studying tooth innervation. Frontiers in physiology. 5 (August), (2014).
  38. Connor, R., Tessier-Lavigne, M. Identification of maxillary factor, a maxillary process-derived chemoattractant for developing trigeminal sensory axons. Neuron. 24, 165-178 (1999).

Play Video

Cite This Article
Pagella, P., Miran, S., Mitsiadis, T. Analysis of Developing Tooth Germ Innervation Using Microfluidic Co-culture Devices. J. Vis. Exp. (102), e53114, doi:10.3791/53114 (2015).

View Video