Summary

Imaging membranpotentialet med to typer af genetisk kodede Fluorescerende Spænding Sensorer

Published: February 04, 2016
doi:

Summary

A method for imaging changes in membrane potential using genetically encoded voltage indicators is described.

Abstract

Genetically encoded voltage indicators (GEVIs) have improved to the point where they are beginning to be useful for in vivo recordings. While the ultimate goal is to image neuronal activity in vivo, one must be able to image activity of a single cell to ensure successful in vivo preparations. This procedure will describe how to image membrane potential in a single cell to provide a foundation to eventually image in vivo. Here we describe methods for imaging GEVIs consisting of a voltage-sensing domain fused to either a single fluorescent protein (FP) or two fluorescent proteins capable of Förster resonance energy transfer (FRET) in vitro. Using an image splitter enables the projection of images created by two different wavelengths onto the same charge-coupled device (CCD) camera simultaneously. The image splitter positions a second filter cube in the light path. This second filter cube consists of a dichroic and two emission filters to separate the donor and acceptor fluorescent wavelengths depending on the FPs of the GEVI. This setup enables the simultaneous recording of both the acceptor and donor fluorescent partners while the membrane potential is manipulated via whole cell patch clamp configuration. When using a GEVI consisting of a single FP, the second filter cube can be removed allowing the mirrors in the image splitter to project a single image onto the CCD camera.

Introduction

Den største fokus i dette papir er at demonstrere den optiske billeddannelse af ændringer i membran potentialer in vitro ved hjælp af genetisk kodet fluorescerende proteiner. Imaging ændringer i membranpotentiale giver spændende mulighed for at studere aktiviteten af ​​neuronale kredsløb. Når ændringer i membranpotentialet resultat i en fluorescensintensitet forandring, hver pixel i kameraet bliver et surrogat elektrode muliggør nonintrusive målinger af neuronal aktivitet. For over fyrre år har økologiske spændingsfølsomme farvestoffer været nyttigt til at observere ændringer i membranpotentialet 1-4. Men disse farvestoffer mangler cellulære specificitet. Desuden er nogle celletyper er vanskelige at farve. Genetisk indkodede Spændingsindikatorer (GEVIs) overvinde disse begrænsninger ved at have cellerne, der skal undersøges specifikt udtrykker det fluorescerende spændingsfølsomme probe.

Der er tre klasser af GEVIs. Den første klasse af GEVI bruger voltage-sensing domæne fra den spændingsdrevne sensing phosphatase med enten en enkelt fluorescerende protein (FP) 5-9- eller en Forster resonans (FRET) pair 10-12. Den anden klasse af sensorer anvender mikrobiel rhodopsin som en fluorescerende indikator direkte 13-15 eller via elektrokrome FRET 16,17. Den tredje klasse anvender to komponenter, den genetiske komponent er en membran forankret FP og en anden komponent er en membranbundet quenching farvestof 18-20. Mens den anden og tredje klasser er nyttige til in vitro og skive eksperimenter 19,20, kun den første klasse af sensorer er i øjeblikket anvendelige til in vivo analyser 6.

I denne rapport vil vi demonstrere billeddannelse af membranpotentialet ved hjælp af den første klasse af GEVIs (figur 1) in vitro. Denne første kategori af spændingssensorer er den nemmeste at overgangen til in vivo-afbildning. Da GEVIs utilizing en spænding-sensing domæne fusioneret til et FP er ca. 50 gange lysere end den rhodopsin klasse af sensorer, de kan afbildes ved hjælp af belysning buelampe snarere end at kræve en ekstremt kraftig laser. En anden konsekvens af forskellen i lysstyrke er, at den første klasse af GEVIs let kan overstige autofluorescens af hjernen. De rhodopsin-baserede prober ikke kan. Den tredje klasse af sensoren er lige så lyse som den første klasse, men kræver tilsætning af en kemisk quencher, som er vanskelige at administrere in vivo.

Vi vil derfor demonstrere erhvervelsen af en sonde med en enkelt FP (Bongwoori) 8 og en sonde, der består af et FRET-par (Nabi 2) 12. Den FRET konstruktioner i denne rapport, er sommerfugl versioner af VSFP-CR (spændingsfølsomme fluorescerende proteiner – Clover-mRuby2) 11, der består af et grønt fluorescerende donor, Kløver, og en rød fluorescerende acceptor, mRuby2, opkaldt Nabi 2,242 og Nabi 2,244 <sop> 12. I indledningen til disse typer af optagelser bør give forskerne en bedre forståelse af den type oplysninger GEVIs kan give.

Figur 1
Figur 1. To typer af genetisk kodede Spændingsindikatorer (GEVIs) Trykte i denne rapport (A) En mono FP baseret GEVI have en trans-membran spænding-sensing domæne og et fluorescerende protein. (B) En FRET baseret GEVI består af en trans-membran spænding-sensing domæne, et FRET donor og acceptor. Klik her for at se en større version af dette tal.

Protocol

Etik erklæring: Dyret eksperiment Protokollen blev godkendt af Institutional Animal Care og brug Udvalg på KIST dyr protokol 2014-001. 1. Opsætning Udstyr setup Imaging Placer en inverteret fluorescensmikroskop på et vibrationsisolering tabel. Brug en stor forstørrelse (60X nedsænkning olie objektiv med 1,35 numeriske åbning) objektiv og et filter terning udstyret med et dikroisk spejl og filtre er egnede til de fluorescerende proteiner, der anvendes til spænding …

Representative Results

Forbigående transficerede celler kan udvise signifikant variation i fluorescensintensiteten og graden af ​​plasmamembran-ekspression. Selv på den samme dækglas nogle celler vil have varierende niveauer af intern fluorescens. Dette er mest sandsynligt på grund af mængden af ​​transfektion middel absorberes af cellen. Lejlighedsvis, for meget ekspression forårsager cellen at opleve den udfoldede protein respons resulterer i apoptose 27 (lyse, afrundede celler, med …

Discussion

Nervesystemet anvender spænding på flere forskellige måder, inhibering forårsager en mindre hyperpolarisering, synaptisk input forårsager en mindre depolarisering og et aktionspotentiale resulterer i en relativt stor spændingsændring. Evnen til at måle ændringer i membranpotentiale af GEVIs giver lovende potentiale analysere flere komponenter af neuronale kredsløb samtidigt. I denne rapport demonstrerer vi en grundlæggende metode til billeddannelse ændringer i membranpotentialet hjælp GEVIs.

<p class="j…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the World Class Institute (WCI) program of the National Research Foundation of Korea funded by Ministry of Education, Science, and Technology of Korea Grant WCI 2009-003 and Korea Institute of Science and Technology Institutional Program Project 2E24210. Sungmoo Lee was supported by Global Ph.D. Fellowship program (NRF-2013H1A2A1033344) of the National Research Foundation (NRF) under the Ministry of Education (MOE, Korea).

Materials

Inverted Microscope Olympus IX71
60X objective lens (numerical aperture = 1.35) Olympus UPLSAPO 60XO
Excitation filter Semrock  FF02-472/30 For voltage imaging of super ecliptic pHluorin in Bongwoori
Dichroic mirror Semrock FF495-Di03-25×36
Emission filter Semrock FF01-497/LP
75W Xenon arc lamp CAIRN OptoSource Illuminator LEDs and lasers are also effective light sources
Slow speed CCD camera Hitachi KP-D20BU
Dual port camera adaptor Olympus U-DPCAD
High speed CCD camera RedShirtImaging, LLC NeuroCCD-SM
Image splitter CAIRN Optosplit 2
Excitation filter Semrock FF01-475/23-25 For voltage imaging of FRET pair based GEVI consisting of Clover and mRuby2)
Dichroic mirror Semrock FF495-Di03-25×36
Emission filter Chroma ET520/40
Dichroic mirror Semrock FF560-FDi01-25X36
Emission filter Chroma ET645/75
Vibration isolation system Kinetic systems 250BM-IC, 5702E-3036-31
Patching chamber Warner instruments RC-26G, 64-0235
#0 Micro Coverglass (22x40mm) Electron Microscopy Sciences 72198-20
Temperature controller Warner instruments TC-344B
#0 (0.08~0.13mm) – 10mm diameter glass coverslip Ted Pella 260366
Lipofection agent Life Technologies 11668-027
Calcium phosphate reagent Clontech – Takara 631312
Patch clamp amplifier HEKA EPC 10 USB amplifier
Multi-channel data acquisition software HEKA Patchmaster
Image acquisition and analysis software RedShirtImaging Neuroplex
Spreadsheet application software Microsoft Microsoft Excel 2010
Data analysis software OriginLab OriginPro 8.6.0
Demagnifier Qioptiq LINOS Optem standard camera coupler 0.38x SC38 J clamp
Confocal microscope Nikon Nikon A1R confocal microscope
Anti-fade reagent Life Technologies P36930

References

  1. Salzberg, B. M., Davila, H. V., Cohen, L. B. Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature. 246, 508-509 (1973).
  2. Cohen, L. B., et al. Changes in axon fluorescence during activity: molecular probes of membrane potential. J. Membrane Biol. 19, 1-36 (1974).
  3. Tasaki, I., Warashina, A. Dye-membrane interaction and its changes during nerve excitation. Photochem Photobiol. 24, 191-207 (1976).
  4. Grinvald, A., Hildesheim, R. VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci. 5, 874-885 (2004).
  5. Jin, L., Han, Z., Platisa, J., Wooltorton, J. R., Cohen, L. B., Pieribone, V. A. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron. 75, 779-785 (2012).
  6. Cao, G., Platisa, J., Pieribone, V. A., Raccuglia, D., Kunst, M., Nitabach, M. N. Genetically targeted optical electrophysiology in intact neural circuits. Cell. 154, 904-913 (2013).
  7. St-Pierre, F., Marshall, J. D., Yang, Y., Gong, Y., Schnitzer, M. J., Lin, M. Z. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci. 17, 884-889 (2014).
  8. Piao, H. H., Rajakumar, D., Kang, B. E., Kim, E. H., Baker, B. J. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential. J Neurosci. 35, 372-385 (2015).
  9. Jung, A., Garcia, J. E., Kim, E., Yoon, B. J., Baker, B. J. Linker length and fusion site composition improve the optical signal of genetically encoded fluorescent voltage sensors. Neurophoton. 2, 021012 (2015).
  10. Dimitrov, D., et al. Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS One. 2, e440 (2007).
  11. Lam, A. J., et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods. 9, 1005-1012 (2012).
  12. Sung, U., et al. Developing fast fluorescent protein voltage sensors by optimizing FRET interactions. PLoS One. 10, e0141585 (2015).
  13. Kralj, J. M., Douglass, A. D., Hochbaum, D. R., Maclaurin, D., Cohen, A. E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat Methods. 9, 90-95 (2012).
  14. Flytzanis, N. C., et al. Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat Commun. 5, 4894 (2014).
  15. Hochbaum, D. R., et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods. 11, 825-833 (2014).
  16. Gong, Y., Wagner, M. J., Zhong Li, J., Schnitzer, M. J. Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nat Commun. 5, 3674 (2014).
  17. Zou, P., et al. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat Commun. 5, 4625 (2014).
  18. Chanda, B., Blunck, R., Faria, L. C., Schweizer, F. E., Mody, I., Bezanilla, F. A hybrid approach to measuring electrical activity in genetically specified neurons. Nat Neurosci. 8, 1619-1626 (2005).
  19. Wang, D., McMahon, S., Zhang, Z., Jackson, M. B. Hybrid voltage sensor imaging of electrical activity from neurons in hippocampal slices from transgenic mice. J Neurophysiol. 108, 3147-3160 (2012).
  20. Weigel, S., Flisikowska, T., Schnieke, A., Luksch, H. Hybrid voltage sensor imaging of eGFP-F expressing neurons in chicken midbrain slices. J Neurosci Methods. 233, 28-33 (2014).
  21. Waters, J. C., Sluder, G., Wolf, D. E. Live-Cell Fluorescence Imaging. Methods in Cell Biology Volume 81. , 115-140 (2007).
  22. Kaech, S., Banker, G. Culturing hippocampal neurons. Nat Protoc. 1, 2406-2415 (2006).
  23. Beaudoin, G. M., et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc. 7, 1741-1754 (2012).
  24. Jiang, M., Chen, G. High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nat Protoc. 1, 695-700 (2006).
  25. Molleman, A. . Patch clamping: an introductory guide to patch clamp electrophysiology. , 101-102 (2003).
  26. Osorio, N., Delmas, P. Patch clamp recording from enteric neurons in situ. Nat Protoc. 6, 15-27 (2010).
  27. Schroder, M., Kaufman, R. J. The mammalian unfolded protein response. Annu Rev Biochem. 74, 739-789 (2005).
  28. Wilt, B. A., Fitzgerald, J. E., Schnitzer, M. J. Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing. Biophys J. 104, 51-62 (2013).
  29. Lundby, A., Mutoh, H., Dimitrov, D., Akemann, W., Knopfel, T. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One. 3, e2514 (2008).
  30. Peterka, D. S., Takahashi, H., Yuste, R. Imaging voltage in neurons. Neuron. 69, 9-21 (2011).

Play Video

Cite This Article
Lee, S., Piao, H. H., Sepheri-Rad, M., Jung, A., Sung, U., Song, Y., Baker, B. J. Imaging Membrane Potential with Two Types of Genetically Encoded Fluorescent Voltage Sensors. J. Vis. Exp. (108), e53566, doi:10.3791/53566 (2016).

View Video