Summary

A todo el montaje<em> In Situ</em> Método de hibridación para el molusco gasterópodo<em> Lymnaea stagnalis</em

Published: March 15, 2016
doi:

Summary

The goal of this protocol is to provide users with a set of methods for the high-throughput decapsulation of Lymnaea stagnalis embryos and larvae in preparation for whole mount in situ hybridization, and for subsequent pre- and post-hybridization treatments.

Abstract

Todo el montaje hibridación in situ (WMISH) es una técnica que permite la resolución espacial de las moléculas de ácido nucleico (a menudo ARNm) dentro de una preparación de tejido "todo monte ', o etapa de desarrollo (tal como un embrión o larva) de interés. WMISH es extremadamente potente, ya que puede contribuir de manera significativa a la caracterización funcional de los metazoos genomas complejos, un reto que se está convirtiendo en un cuello de botella con el diluvio de datos de secuencias de próxima generación. A pesar de la simplicidad conceptual de la técnica mucho tiempo es a menudo necesaria para optimizar los distintos parámetros inherentes a los experimentos WMISH para nuevos sistemas de modelo; diferencias sutiles en las propiedades celulares y bioquímicas entre tipos de tejidos y etapas del desarrollo significa que un único método WMISH puede no ser apropiada para todas las situaciones. Hemos desarrollado una serie de métodos para WMISH las reemergentes modelo gasterópodo Lymnaea stagnalis que generan consistente yseñales WMISH claras para una gama de genes, y en todas las etapas de desarrollo. Estos métodos incluyen la asignación de las larvas de la edad cronológica desconocido a una ventana ontogénica, la eliminación eficiente de los embriones y larvas de sus cápsulas de huevos, la aplicación de un tratamiento de proteinasa-K apropiado para cada ventana ontogénica, y la hibridación, después de la hibridación y la inmunodetección pasos. Estos métodos proporcionan un fundamento a partir del cual la señal resultante de una transcripción de ARN dada puede ser refinado con ajustes específicos de la sonda (sonda principalmente la concentración y la temperatura de hibridación).

Introduction

Los moluscos son un grupo de animales que mantienen el interés de una amplia diversidad de disciplinas científicas. A pesar de su diversidad morfológica 1, la riqueza de especies (en segundo lugar solamente a los artrópodos en términos de número de especies 2) y relevancia para una amplia gama de comerciales 3, 4 médicos y científicos cuestiones 5-8, hay relativamente pocas especies de moluscos que puede presumir de ser ambos modelos científicos bien equipados y fácil de mantener en un entorno de laboratorio. Uno de moluscos que se utiliza mucho por disciplinas como la neurobiología 9, 10 ecotoxicología y más recientemente la biología evolutiva 11,12, es Lymnaea stagnalis, sobre todo debido a su amplia distribución y la extrema facilidad de mantenimiento. A pesar de su popularidad como un organismo "modelo" y su larga historia de uso por los biólogos del desarrollo 13-19, el alcance y la potencia de las herramientas moleculares disponibles para el L. StAGNalis comunidad científica se encuentra muy por detrás de la de los modelos más tradicionales de origen animal (Drosophila, el ratón, el erizo de mar, nematodos).

Nuestro deseo de desarrollar Lymnaea como un modelo molecular se debe a un interés en los mecanismos moleculares que guían la formación de la cáscara. Esto nos ha motivado para filtrar un conjunto de técnicas que permitan la visualización eficiente, consistente y sensible de la expresión génica durante el desarrollo de Lymnaea 's. Todo el montaje hibridación in situ (WMISH) se emplea extensamente para una variedad de organismos modelo y ha estado en uso durante más de 40 años 20. En sus diferentes aspectos, ISH puede emplearse para localizar espacialmente loci específicos en los cromosomas, rRNA, mRNA y micro-ARN.

Uno de los retos que se necesita para responder antes de perfeccionar un método para L. WMISH stagnalis fue el tema de la extracción con suavidad y eficacia embriones y larvas para distintas etapas de tél cápsulas de huevos en los que se depositan. Esta extracción, o 'decapsulación', que se debe lograr de manera eficiente con el fin de recoger el material adecuado para un determinado experimento in situ, mientras que al mismo tiempo mantener la integridad morfológica y celular. Mientras que otros organismos modelo también se someten a desarrollo encapsulado, en nuestras manos ninguno de los métodos informados para aquellas especies podría emplear con éxito en L. stagnalis.

Los objetivos generales de este método son, por lo tanto: para extraer L. stagnalis embriones y larvas de sus cápsulas en una forma de alto rendimiento, que se aplican tratamientos de pre-hibridación que optimizan la señal WMISH, para preparar embriones y larvas con WMISHsignals satisfactorios para la formación de imágenes.

Protocol

NOTA: Los siguientes pasos se describe nuestro método para llevar a cabo un experimento in situ en las fases embrionarias y las larvas de L. stagnalis. Cuando un paso implica el uso de un producto químico peligroso esto se indica mediante la palabra "PRECAUCIÓN" y todos los procedimientos de seguridad adecuados debe ser adoptada. Los enlaces a las hojas MSDS representativos de los productos químicos peligrosos están dentro de Archivo 1. Recetas para todos los reactivos e…

Representative Results

Los patrones de tinción WMISH representativo mostrado en la Figura 3 se generaron utilizando la técnica descrita anteriormente, y reflejan una variedad de patrones de expresión espacial de genes implicados en una serie de procesos moleculares que varían de formación de la cáscara (gen Novel 1, 2, 3 y 4), a la señalización célula-célula (Dpp) para regulación de la transcripción (Brachyury) a través de una gama de etapas de …

Discussion

El método aquí descrito permite la visualización eficaz de transcritos de ARN con presumiblemente diferentes niveles de expresión dentro de todas las etapas de desarrollo de Lymnaea stagnalis. Para eliminar los embriones y larvas de sus cápsulas que probó una variedad de productos químicos, choque osmótico y tratamientos físicos reportados para otro encapsulated- el desarrollo de organismos modelo. Sin embargo, en nuestras manos el método que describimos aquí es la única técnica de alto rendimiento…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabajo fue apoyado por fondos a través de DJJ proyecto DFG # JA2108 / 2-1.

Materials

Featherweight forceps Ehlert & Partner #4181119
Silicon tubing Glasgerätebau OCHS GmbH 760070
Glass capillaries Hilgenberg 1403547
12 well tissue culture dishes Carl Roth CE55.1
37% Formaldehyde Carl Roth P733.1 CAUTION – May cause cancer. Toxic by inhalation, in contact with skin and if swallowed. Toxic: danger of very serious irreversible effects through inhalation, in contact with skin and if swallowed.
Ethylenediamine tetraacetic acid Carl Roth CN06.3 CAUTION – CAUSES EYE IRRITATION. MAY CAUSE RESPIRATORY TRACT AND SKIN IRRITATION. Avoid breathing dust. Avoid contact with eyes, skin and clothing. Use only with adequate ventilation
Magnesium Chloride Carl Roth 2189.1
Tween-20 Carl Roth 9127.1 CAUTION – May be harmful if inhaled. May cause respiratory tract irritation. May be harmful if absorbed through skin. May cause skin irritation. May cause eye irritation. May be harmful if swallowed.
Sodium Chloride Carl Roth 3957.1
Ficoll type 400 Carl Roth CN90.1
polyvinylpyrrolidone K30 (MW 40) Carl Roth 4607.1 CAUTION – May be harmful if inhaled. May cause respiratory tract irritation. May be harmful if absorbed through skin. May cause skin irritation. May cause eye irritation. May be harmful if swallowed.
Nuclease freeBovine Serum Albumin Carl Roth 8895.1
Salmon sperm Carl Roth 5434.2
Heparin Carl Roth 7692.1 CAUTION – ADVERSE EFFECTS INCLUDE HEMORRHAGE, LOCAL IRRITATION. POSSIBLE ALLERGIC REACTION IF INHALED, INGESTED/CONTACTED. EYES/SKIN/RESPIRATORY TRACT IRRITANT. POSSIBLE HYPERSENSITIZATION. DURING PREGNANCY HAS BEEN REPORTED TO INCREASE RISK OF STILLBIRTH
Proteinase-K Carl Roth 7528.1
Glycine Carl Roth 3790.2
Deionised formamide Carl Roth P040.1 CAUTION – Irritating to eyes and skin. May be harmful by inhalation, in contact with skin and if swallowed. May cause harm to the unborn child. Hygroscopic.
Standard formamide Carl Roth 6749.3 CAUTION – Irritating to eyes and skin. May be harmful by inhalation, in contact with skin and if swallowed. May cause harm to the unborn child. Hygroscopic.
Triethanolamine Carl Roth 6300.1 CAUTION – Avoid breathing vapor or mist. Avoid contact with eyes. Avoid prolonged or repeated contact with skin. Wash thoroughly after handling.
Acetic anhydride Carl Roth 4483.1 CAUTION – CAUSES SEVERE SKIN AND EYE BURNS. REACTS VIOLENTLY WITH WATER. HARMFUL IF SWALLOWED. VAPOR IRRITATING TO THE EYES AND RESPIRATORY TRACT
Maleic acid Carl Roth K304.2 CAUTION – Very hazardous in case of eye contact (irritant), of ingestion, . Hazardous in case of skin contact (irritant), of inhalation (lung irritant). Slightly hazardous in case of skin contact (permeator). Corrosive to eyes and skin.
Benzyl benzoate Sigma B6630-250ML CAUTION – May be harmful if inhaled. May cause respiratory tract irritation. May be harmful if absorbed through skin. May cause skin irritation. May cause eye irritation. Harmful if swallowed.
Benzyl alcohol Sigma 10,800-6 CAUTION – Harmful if swallowed. Harmful if inhaled. Causes serious eye irritation.
Glycerol Carl Roth 3783.1
Blocking powder Roche 11096176001
Anti DIG Fab fragments AP conjugated Roche 11093274910
Tris-HCl Carl Roth 9090.3
4-Nitro blue tetrazolium chloride in dimethylformamide  Carl Roth 4421.3 CAUTION – May cause harm to the unborn child. Harmful by inhalation and in contact with skin. Irritating to eyes.
5-bromo-4-chloro-3-indolyl-phosphate Carl Roth A155.3 CAUTION – Potentially harmful if ingested. Do not get on skin, in eyes, or on clothing. Potential skin and eye irritant. 
N-acetyl cysteine Carl Roth 4126.1
Dithiothreitol Carl Roth 6908.1 CAUTION – May cause eye and skin irritation. May cause respiratory and digestive tract irritation. The toxicological properties of this material have not been fully investigated.
Tergitol Sigma NP40S CAUTION – May be harmful if inhaled. May cause respiratory tract irritation. May be harmful if absorbed through skin. May cause skin irritation. May cause eye irritation. May be harmful if swallowed.
Sodium dodecyl sulphate Carl Roth CN30.3 CAUTION – Harmful if swallowed. Toxic in contact with skin. Causes skin irritation. Causes serious eye damage. May cause respiratory irritation.
Potassium Chloride Carl Roth 6781.1
di-Sodium hydrogen phosphate dihydrate (Na2HPO4.2H2O) Carl Roth 4984.1
Potassium dihydrogen phosphate (KH2PO4) Carl Roth 3904.1
Tri sodium citrate dihydrate (C6H5Na3O7.2H2O) Carl Roth 3580.1 CAUTION – May cause eye, skin, and respiratory tract irritation. The toxicological properties of this material have not been fully investigated.
Mineral oil  Carl Roth HP50.2
InSituPro-Vsi  Intavis www.intavis.de/products/automated-ish-and-ihc

References

  1. Smith, S. A., Wilson, N. G., Goetz, F. E., Feehery, C., Andrade, S. C. S., et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature. 480 (7377), 364-367 (2011).
  2. Brusca, R. C., Brusca, G. J. . Invertebrates. , (2002).
  3. World Health Organization. Schistosomiasis: number of people treated in 2011. Week. Epi. Rec. 88, 81-88 (2013).
  4. Henry, J. Q., Collin, R., Perry, K. J. The slipper snail, Crepidula.: an emerging lophotrochozoan model system. Biol. Bull. 218 (3), 211-229 (2010).
  5. Perry, K. J., Henry, J. Q. CRISPR/Cas9-mediated genome modification in the mollusc, Crepidula fornicata. Genesis. 53 (2), 237-244 (2015).
  6. Kandel, E. R. The molecular biology of memory storage: a dialog between genes and synapses. Bio. Rep. 24, 475-522 (2004).
  7. Jackson, D. J., Ellemor, N., Degnan, B. M. Correlating gene expression with larval competence, and the effect of age and parentage on metamorphosis in the tropical abalone Haliotis asinina. Mar. Biol. 147, 681-697 (2005).
  8. Carter, C. J., Farrar, N., Carlone, R. L., Spencer, G. E. Developmental expression of a molluscan RXR and evidence for its novel, nongenomic role in growth cone guidance. Dev. Biol. 343 (1-2), 124-137 (2010).
  9. Rittschof, D., McClellan-Green, P. Molluscs as multidisciplinary models in environment toxicology. Mar. Pollut. Bull. 50 (4), 369-373 (2005).
  10. Liu, M. M., Davey, J. W., Jackson, D. J., Blaxter, M. L., Davison, A. A conserved set of maternal genes? Insights from a molluscan transcriptome. Int. J. Dev. Biol. 58 (6-8), 501-511 (2014).
  11. Hohagen, J., Herlitze, I., Jackson, D. J. An optimised whole mount in situ. hybridisation protocol for the mollusc Lymnaea stagnalis. BMC Dev. Biol. 15 (1), 19 (2015).
  12. Raven, C. P. The development of the egg of Limnaea stagnalis. L. from oviposition till first cleavage. Arch. Neth. J. Zool. 1 (4), 91-121 (1946).
  13. Raven, C. P. The development of the egg of Limnaea Stagnalis. L. from the first cleavage till the troghophore stage, with special reference to its’ chemical embryology. Arch. Neth. J. Zool. 1 (4), 353-434 (1946).
  14. Raven, C. P. Morphogenesis in Limnaea stagnalis. and its disturbance by lithium. J. Exp. Zool. 121 (1), 1-77 (1952).
  15. Raven, C. P. The nature and origin of the cortical morphogenetic field in Limnaea. Dev. Biol. 7, 130-143 (1963).
  16. Morrill, J. B., Blair, C. A., Larsen, W. J. Regulative development in the pulmonate gastropod, Lymnaea palustris., as determined by blastomere deletion experiments. J Exp Zool. 183 (1), (1973).
  17. Van Den Biggelaar, J. A. M. Timing of the phases of the cell cycle during the period of asynchronous division up to the 49-cell stage in Lymnaea. J. Emb. Exp. Morph. 26 (3), 367-391 (1971).
  18. Verdonk, N. H. Gene expression in early development of Lymnaea stagnalis. Dev. Biol. 35 (1), 29 (1973).
  19. Gall, J. G., Pardue, M. L. Formation and Detection of Rna-Dna Hybrid Molecules in Cytological Preparations. Proceedings Of The National Academy Of Sciences Of The United States Of America. 63 (2), 378-383 (1969).
  20. Iijima, M., Takeuchi, T., Sarashina, I., Endo, K. Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis. Dev Genes Evol. 218 (5), 237-251 (2008).
  21. Shimizu, K., Sarashina, I., Kagi, H., Endo, K. Possible functions of Dpp in gastropod shell formation and shell coiling. Dev Genes Evol. 221 (2), 59-68 (2011).
  22. Koop, D., Richards, G. S., Wanninger, A., Gunter, H. M., Degnan, B. M. D. The role of MAPK signaling in patterning and establishing axial symmetry in the gastropod Haliotis asinina. Dev. Biol. 311 (1), 200-212 (2007).
  23. Lartillot, N., Lespinet, O., Vervoort, M., Adoutte, A. Expression pattern of Brachyury in the mollusc Patella vulgata suggests a conserved role in the establishment of the AP axis in Bilateria. Development. 129 (6), 1411-1421 (2002).
  24. Jackson, D. J., Wörheide, G., Degnan, B. M. Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol. Biol. 7 (1), 160 (2007).
  25. Jackson, D. J., Meyer, N. P., Seaver, E., Pang, K., McDougall, C., et al. Developmental expression of COE. across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development. Dev Genes Evol. 220, 221-234 (2010).
  26. Perry, K. J., Lyons, D. C., Truchado-Garcia, M., Fischer, A. H. L., Helfrich, L. W., et al. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc. Dev. Dyn. , (2015).
  27. Iijima, M., Takeuchi, T., Sarashina, I., Endo, K. Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis. Dev Genes Evol. 218 (5), 237-251 (2008).
  28. Shimizu, K., Iijima, M., Setiamarga, D. H. E., Sarashina, I., Kudoh, T., et al. Left-right asymmetric expression of dpp in the mantle of gastropods correlates with asymmetric shell coiling. EvoDevo. 4 (1), 15 (2013).
  29. Christodoulou, F., Raible, F., Tomer, R., Simakov, O., Trachana, K., et al. Ancient animal microRNAs and the evolution of tissue identity. Nature. 463, (2010).
  30. Koga, M., Kudoh, T., Hamada, Y., Watanabe, M., Kageura, H. A new triple staining method for double in situ hybridization in combination with cell lineage tracing in whole-mount Xenopus embryos. Dev Growth Differ. 49 (8), 635-645 (2007).
  31. Lauter, G., Söll, I., Hauptmann, G. Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems. BMC Dev. Biol. 11 (1), 43 (2011).
  32. Davison, A., Frend, H. T., Moray, C., Wheatley, H., Searle, L. J., Eichhorn, M. P. Mating behaviour in Lymnaea stagnalis. pond snails is a maternally inherited, lateralized trait. Biol. Lett. 5 (1), 20-22 (2009).
  33. Kuroda, R., Endo, B., Abe, M., Shimizu, M. Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. Nature. 462 (7274), 790-794 (2009).
  34. Shibazaki, Y., Shimizu, M., Kuroda, R. Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr. Biol. 14 (16), 1462-1467 (2004).
  35. Lu, T. Z., Feng, Z. P. A sodium leak current regulates pacemaker activity of adult central pattern generator neurons in Lymnaea stagnalis. PLoS One. 6 (4), e18745 (2011).
  36. Dawson, T. F., Boone, A. N., Senatore, A., Piticaru, J., Thiyagalingam, S., et al. Gene Splicing of an Invertebrate Beta Subunit (LCav-beta) in the N-Terminal and HOOK Domains and Its Regulation of LCav1 and LCav2 Calcium Channels. PLoS ONE. 9 (4), e92941 (2014).
  37. Smith, S. A., Wilson, N. G., Goetz, F. E., Feehery, C., Andrade, S. C. S., et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature. 480 (7377), 364-367 (2011).
  38. Gregory, T. R., Nicol, J. A., Tamm, H., Kullman, B., Kullman, K., et al. Eukaryotic genome size databases. Nuc. Acids. Res. 35 (Database issue), D332-D338 (2007).

Play Video

Cite This Article
Jackson, D. J., Herlitze, I., Hohagen, J. A Whole Mount In Situ Hybridization Method for the Gastropod Mollusc Lymnaea stagnalis. J. Vis. Exp. (109), e53968, doi:10.3791/53968 (2016).

View Video