Summary

灌注的空间测量,实体肿瘤间质流体压力和脂质体积累

Published: August 18, 2016
doi:

Summary

The heterogeneous intra-tumoral accumulation of liposomes has been linked to an abnormal tumor microenvironment. Herein methods are presented to measure tumor microcirculation by perfusion imaging and elevated interstitial fluid pressure (IFP) using an image-guided robotic system. Measurements are compared to the intra-tumoral accumulation of liposomes, determined using volumetric micro-CT imaging.

Abstract

脂质体的异质肿瘤内积累是其功效的关键决定因素。既混沌肿瘤微循环和高架IFP被链接到基于纳米技术的药物递送系统的异质肿瘤内分布,如脂质体。在本研究中,肿瘤微循环,升高的IFP,和纳米颗粒的积累之间的关系,通过体内实验进行了研究。这是通过使用动态对比增强计算机断层扫描(DCE-CT)和使用连接到微CT扫描仪的新型图像引导的机器人针放置系统肿瘤IFP的测量肿瘤微循环的评估来实现的。脂质体的肿瘤内积聚是由纳米颗粒脂质体制剂稳定地包封造影剂碘海醇(CT-脂质体)的基于图像的CT评价来确定。 CT成像允许的空间分布的共定位肿瘤血流动力学,IFP和CT-脂质体蓄积在乳腺癌的个体皮下异种移植物小鼠模型。测量导致发现该灌注和血​​浆体积分数是脂质体的肿瘤内分布的强介体。此外,结果表明,IFP起着通过调节血流介导的脂质体分布的间接作用。

Introduction

测量纳米颗粒的药物递送系统的肿瘤内积累可以提供,以确定是否细胞毒性药物的适当浓度已在肿瘤内实现的​​一个重要工具。 “图象能够”脂质体系统的发展允许非侵入性和定量的体内检测用成像方式如正电子发射断层扫描(PET)1,光学荧光2,和计算机断层扫描(CT)3的药物递送载体的, 4和磁共振成像(MRI)5。成像已被用于确定药代动力学和脂质体递送系统的生物分布和以显示跨学科和肿瘤内的异质性在纳米颗粒累积6,7的程度。然而,纳米粒子成像本身并不能识别已经给他们可怜的积累和分配贡献了生物屏障。这方面的知识是最重要的,将r更有效的配方憩的发展和战略,以提高肿瘤内积聚8。它已被证实的治疗策略可以应用于调节从而提高纳米颗粒运输9特定生物屏障。此外,纳米颗粒制剂已经开发了专门克服特定生物传输阻挡10。在这两种情况下,生物屏障的测量可以被用来指导使用合适的纳米颗粒的药物递送策略的。

肿瘤微循环和升高IFP被认为是纳米颗粒的肿瘤内蓄积的两个关键因素,如脂质体,在实体瘤9,11。然而,有助于脂质体积累穷人服务的其他障碍包括致密的细胞外基质,防渗血管和实体组织的压力12。这些障碍在一个时空相关方式,与异常血流和升高的组织间隙液压作为驱动纳米颗粒的初始传送和外渗的两个重要因素。如先前所讨论的,建立肿瘤微循环,升高的IFP和脂质体的肿瘤内蓄积之间的关系是当务之急脂质体的成像数据的适当解释。在此定量的方法来衡量实体瘤,肿瘤微循环,IFP升高和积累纳米之间的关系呈现。这是通过使用容积CT成像,肿瘤微循环使用动态对比增强计算机断层成像执行的CT脂质体的造影剂的肿瘤内分布的共定位测量完成,使用图像引导的机器人针定位系统,肿瘤IFP称为对CT-IFP机器人13。

Protocol

所有的体内实验是由大学健康网络机构动物护理和使用委员会批准的方案下进行的。 1.动物模型 5至7×10 6个 MDA-MB-231乳腺癌肿瘤细胞在含10%胎牛血清(FBS)和100倍稀释青霉素-链霉素的一起之间培养。 收获细胞时,他们使用的是0.05%胰蛋白酶EDTA溶液80%汇合。 3-5分钟后中和胰蛋白酶EDTA的DMEM的3倍量。取细胞的15微升等分,并使用血球计数?…

Representative Results

上述协议应产生的CT-脂质体与碘海醇的包封浓度,平均脂质体直径,和55毫克毫升-1ζ电位,分别91.8±0.3 nm和-45.5±2.5毫伏, 图1a包括代表DCE-CT成像结果,产生一个时间序列,显示在碘海醇的肿瘤内蓄积的经时变化的体积数据。选择肿瘤内的投资回报率产生可使用示踪动力学建模方法以获得灌注,血管通透性,血浆体积分数,和间质体积分数( 图1b…

Discussion

本文中所呈现用于基于图像的测量方法能够肿瘤微循环特性,IFP,和CT-脂质积累的空间分布的确定。以前的尝试涉及这些属性都依赖于执行在多个肿瘤携带动物散装测量,因此缺乏灵敏度阐明负责该已普遍被观察到纳米尺寸的药物输送系统15在肿瘤内积聚的异质性的机制。 DCE-CT提供了测量在肿瘤微循环特性的肿瘤内变化的工具,立体CT提供的CT-脂质沉积动力学的准确描绘,与CT-IFP机器人系…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Dr. Javed Mahmood for assistance with culturing MDA-MB-231 cells and implanting the MDA-MB-231 xenografts, Linyu Fan for preparing the CT-liposomes. Shawn Stapleton is grateful for funding from the Natural Sciences and Engineering Research Postgraduate Scholarships Program and the Terry Fox Foundation Strategic Initiative for Excellence in Radiation Research for the 21st Century (EIRR21) at CIHR. This study was supported by grants from the Terry Fox New Frontiers Program (020005) and the Canadian Institutes of Health Research (102569).

Materials

MDA-MB-231 metastatic breast adenocarcinoma tumor cells  ATCC HTB-26
Dulbecco's Modified Eagle Medium (DMEM)  Life Technologies 11965-092
Fetal Bovine Serum (FBS) Sigma-Aldrich F1051
HyClone Penicillin-Streptomycin 100x Solution GE Healthcare Life Sciences SV30010
Trypsin-EDTA (0.05%), phenol red ThermoFisher Scientific 25300-054
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) Avanti Lipids Inc., USA 850355P
Cholesterol (CH) Avanti Lipids Inc., USA 700000P
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol) 2000 (DSPE-PEG2000) Avanti Lipids Inc., USA 880128P
Omnipaque (Iohexol) 300 mg of iodine/mL  GE Healthcare, CA
80 nm pore size Track-Etch polycarbonate membranes Whatman Inc., USA
200 nm pore size Track-Etch polycarbonate membranes Whatman Inc., USA
10 mL Lipex Extruder  Nothern Lipids Inc, CA
Dialysis Bag Molecular Weight Cut Off (MWCO) of 8 kDa Spectrum Labs, USA 
750,000 Nomical Molecular Weight Cut Off (NMWC) Tangential flow column  MidGee ultrafiltration cartridge, GE Healthcare, CA
Peristaltic pump  Watson Marlow Inc., USA
UV spectrometer Helios γ, Spectronic Unicam,  USA
90Plus particle size analyzer  Brookhaven, Holtsville, USA
eXplore Locus Ultra micro-CT system  GE Healthcare, CA Manipulated using CT-Console Software
AxRecon GPU-based Reconstruction  Acceleware Corp. CA
27G Catheter SURFLO Winged Infusion Set Terumo Medical Products, USA SV*27EL
PE20 polyethylyne tubing Becton Dickinson, USA 427406
Pen tip 25G × 3.5′′ Whitacre spinal needle  Becton Dickinson, USA 405140 IFP needle
P23XL  pressure transducer  Harvard Apparatus, CA P23XL
PowerLab 4/35, Bridge Amp, with LabChart Pro 7.0 ADInstruments Pty Ltd., USA PL3504, FE221 IFP acquisition system and acquisition software
CT-Sabre Small Animall Intervention system (CT-IFP Robot) Parallax Innovations, CA Manipulated using CT-IFP robot Control Software
CT-IFP robot alignment software Custom Matlab software
DCE-CT Analysis Software Custom Matlab software
Matlab 2013b Mathworks, USA

References

  1. Seo, J. W., Zhang, H., Kukis, D. L., Meares, C. F., Ferrara, K. W. A novel method to label preformed liposomes with 64Cu for positron emission tomography (PET) imaging. Bioconjugate chemistry. 19 (12), 2577-2584 (2008).
  2. Huang, H., Dunne, M., Lo, J., Jaffray, D., Allen, C. Comparison of Computed Tomography- and Optical Image-Based Assessment of Liposome Distribution. Molecular Imaging. 12 (3), 148-160 (2013).
  3. Stapleton, S., et al. A mathematical model of the enhanced permeability and retention effect for liposome transport in solid tumors. PloS one. 8 (12), e81157 (2013).
  4. Zheng, J., et al. A multimodal nano agent for image-guided cancer surgery. Biomaterials. 67, 160-168 (2015).
  5. Zheng, J., Liu, J., Dunne, M., Jaffray, D. A., Allen, C. In vivo performance of a liposomal vascular contrast agent for CT and MR-based image guidance applications. Pharmaceutical research. 24 (6), 1193-1201 (2007).
  6. Harrington, K. J., et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clinical Cancer Research. 7 (2), 243-254 (2001).
  7. Stapleton, S., Allen, C., Pintilie, M., Jaffray, D. A. Tumor perfusion imaging predicts the intra-tumoral accumulation of liposomes. J Control Release. 172 (1), 351-357 (2013).
  8. Lammers, T., Kiessling, F., Hennink, W. E., Storm, G. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol. Pharm. 7, 1899-1912 (2010).
  9. Stapleton, S., Milosevic, M. F. . Cancer Targeted Drug Delivery. , 241-272 (2013).
  10. Blanco, E., Shen, H., Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature biotechnology. 33 (9), 941-951 (2015).
  11. Heldin, C. H., Rubin, K., Pietras, K., Ostman, A. High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer. 4 (10), 806-813 (2004).
  12. Chauhan, V. P., Stylianopoulos, T., Boucher, Y., Jain, R. K. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annual review of chemical and biomolecular engineering. 2, 281-298 (2011).
  13. Bax, J. S., et al. 3D image-guided robotic needle positioning system for small animal interventions. Medical physics. 40 (1), 011909 (2013).
  14. Stapleton, S., Milosevic, M., Tannock, I. F., Allen, C., Jaffray, D. A. The intra-tumoral relationship between microcirculation, interstitial fluid pressure and liposome accumulation. Journal of Controlled Release. 211, 163-170 (2015).
  15. Stapleton, S., Allen, C., Pintilie, M., Jaffray, D. A. Tumor perfusion imaging predicts the intra-tumoral accumulation of liposomes. J Control Release. 172 (1), 351-357 (2013).
  16. Brix, G., Zwick, S., Kiessling, F., Griebel, J. Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability. Medical physics. 36 (7), 2923-2933 (2009).
  17. Brix, G., Griebel, J., Kiessling, F., Wenz, F. Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements. European journal of nuclear medicine and molecular imaging. 37 (1), 30-51 (2010).

Play Video

Cite This Article
Stapleton, S., Mirmilshteyn, D., Zheng, J., Allen, C., Jaffray, D. A. Spatial Measurements of Perfusion, Interstitial Fluid Pressure and Liposomes Accumulation in Solid Tumors. J. Vis. Exp. (114), e54226, doi:10.3791/54226 (2016).

View Video