Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Cancer Research

腫瘍の増殖と転移研究のためのトレーサブル記者との乳癌患者由来の異種移植片の標識

Published: November 30, 2016 doi: 10.3791/54944

Introduction

外科的に切除腫瘍サンプルは、直接免疫不全マウスに移植された患者由来の腫瘍異種移植片(PDXs)の開発は、標準的な細胞株の異種移植モデルに比べていくつかの利点を提供し、癌研究1,2における大きな進歩を表しています。 PDXsは最初の継代で増殖させ、腫瘍の遺伝的および生物学的特性の最小の変化で連続継代により維持及び拡張することができます。そしてより正確にヒト癌細胞株3-8由来の異種移植片よりも腫瘍の不均一性を反映しています。これらのモデルは、現在広く医薬品開発6,11における前臨床プラットフォームとしておよび癌生物学4,12を研究するための実験的なツールとして、癌治療9,10をパーソナライズするためのプラットフォームとして使用されています。

ほとんどのPDXsは、移植され、実行可能にキャリパーを使用して、時間をかけて腫瘍増殖の測定を可能にする、皮下に伝播されます。しかしながら、転移性疾患はPDXsを使用してモデル化することはより困難でした。具体的には乳癌のために、別の器官への転移能力を有する異種移植片3,5,13を説明したが、転移部位への自発的な普及の頻度が極めて低いです。報告された場合には、転移性の負担の同定および定量は、死後標的臓器の面倒な組織学的検査に依存しています。生物発光を発現する癌細胞株(ルシフェラーゼ、リュック)または蛍光(緑色蛍光タンパク質、GFP)の遺伝子レポーターは、一般的に、脳、肺、心臓内の後の骨、肝臓、尾静脈、大腿骨内および脾臓注射乳癌転移の実験モデルに使用されています14-16。これらのモデルは、原発腫瘍から播種をバイパスするが、それらは臓器向性および転移性のコロニー形成のメカニズムを研究する価値があります。しかし、一次患者の腫瘍とPDXs由来の細胞は、低トランスフェクションまたは形質導入率usinを持つことができますグラム標準的な手順。一つの代替案は、その後、従来の組織培養プロトコルを用いて標識することができ、インビトロ 17 PDX由来細胞株を確立することです。このアプローチは、しかしながら、細胞株の誘導が困難であり、細胞の表現型を変更することができるため、最もPDXsを標識するのに適していません。ここでは、in vivoイメージングに適したレンチウイルスベクターを用いたPDX-解離腫瘍細胞の形質導入のためのプロトコルを提示します。加えて、我々は、免疫不全マウスにおいて、解離したLUC-GFP標識されたPDX細胞の心臓内注射を使用して実験的転移を説明します。

遺伝子レポーターを発現するレンチウイルスとPDX-解離オルガノイドの形質導入のための基本的なプロトコルは、以前に18を説明してきました。現在のプロトコルでは、ヒト腫瘍細胞を濃縮し、100%の導入効率の近くに取得するために追加の方法を説明するだけでなく、実験的な乳癌を検出するための標識PDXsの使用転移。このプロトコルは、様々な発光と蛍光マーカーと同様に、遺伝子発現(目的の遺伝子の、すなわち 、のshRNAノックダウン)の調節にPDXsの複数の癌種を標識するために適合させることができます。

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
DMEM/F12 (1:1) Hyclone SH30023.01
bFGF BD Biosciences 354060
EGF BD Biosciences 354001
Heparin Sigma H4784
B27 Gibco/Thermo Fisher 17504-44
Anti-fungi-antibiotics Hyclone SV30010
Accumax Innovative Cell Technologies AM-105-500 Digestion Buffer
FBS Atlanta Biologicals S11550
HBSS Red Ca2+/Mg2+ free Hyclone SH30031.02
Hepes
10x PBS Hyclone SH30258.01
Cultrex Cultrex 3433-005-01 Basement Matrix Extract (BME)
30 °C shaker NewBrunswick Scientific CO. INC Series 25 Incubator Shaker
70 μm filters Falcon 7352350
scalpels Fisher 22079690
Clorhexidine disinfectant Durvet  NDC# 30798-624-35
Red blood  cell lysis reagent Sigma R7757
Neuraminidase Sigma N7885-1UN
EpCAM (CD326+) microbeads* Miltenyil Biotec 130-061-101
Lineage cell depletion Kit, mouse* Miltenyil Biotec 130-090-858
MiniMACS Separator  Miltenyil Biotec 130-042-102
Mini MACS Magnetic Stand Miltenyil Biotec 130-042-303
MS Columns Miltenyil Biotec 130-042-201 MS or LS columns can be used, adjust to number of cells.
Illumatool Tunable light system Lightools research Various For in vivo fluorescence imaging
Xenogen IVIS200 imaging device Xenogen Various For in vivo luminiscence imaging
Human Cytokeratin Clone MNF116 Monoclonal antibody DAKO M0821 Pan-cytokeratin 
Epidermal Growth factor receptor antibody Cell signaling 4267S EGFR

DOWNLOAD MATERIALS LIST

References

  1. Jin, K., et al. Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol. 12 (7), 473-480 (2010).
  2. Siolas, D., Hannon, G. J. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 73 (17), 5315-5319 (2013).
  3. DeRose, Y. S., et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 17 (11), 1514-1520 (2011).
  4. Kabos, P., et al. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast cancer research and treatment. 135 (2), 415-432 (2012).
  5. Zhang, X., et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 73 (15), 4885-4897 (2013).
  6. Lum, D. H., Matsen, C., Welm, A. L., Welm, B. E. Overview of human primary tumorgraft models: comparisons with traditional oncology preclinical models and the clinical relevance and utility of primary tumorgrafts in basic and translational oncology research. Curr Protoc Pharmacol. , (2012).
  7. Marangoni, E., et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res. 13 (13), 3989-3998 (2007).
  8. Garrido-Laguna, I., et al. Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res. 17 (17), 5793-5800 (2011).
  9. Landis, M. D., Lehmann, B. D., Pietenpol, J. A., Chang, J. C. Patient-derived breast tumor xenografts facilitating personalized cancer therapy. Breast Cancer Res. 15 (1), 201 (2013).
  10. Norum, J. H., Andersen, K., Sorlie, T. Lessons learned from the intrinsic subtypes of breast cancer in the quest for precision therapy. Br J Surg. 101 (8), 925-938 (2014).
  11. Tentler, J. J., et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 9 (6), 338-350 (2012).
  12. Zhang, H., et al. Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition. Breast Cancer Res. 16 (2), R36 (2014).
  13. Liu, H., et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A. 107 (42), 18115-18120 (2010).
  14. Kang, Y. Analysis of cancer stem cell metastasis in xenograft animal models. Methods Mol Biol. 568, 7-19 (2009).
  15. Thibaudeau, L., et al. Mimicking breast cancer-induced bone metastasis in vivo: current transplantation models and advanced humanized strategies. Cancer Metastasis Rev. 33 (2-3), 721-735 (2014).
  16. Francia, G., Cruz-Munoz, W., Man, S., Xu, P., Kerbel, R. S. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer. 11 (2), 135-141 (2011).
  17. Powell, E., et al. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Res. 18 (1), (2016).
  18. DeRose, Y. S., et al. Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol. , (2013).
  19. Wang, X., McManus, M. Lentivirus production. J Vis Exp. (32), (2009).
  20. Indumathi, S., et al. Lineage depletion of stromal vascular fractions isolated from human adipose tissue: a novel approach towards cell enrichment technology. Cytotechnology. 66 (2), 219-228 (2014).
  21. Hines, W. C., Yaswen, P., Bissell, M. J. Modelling breast cancer requires identification and correction of a critical cell lineage-dependent transduction bias. Nat Commun. 6, 6927 (2015).
  22. Campbell, J. P., Merkel, A. R., Masood-Campbell, S. K., Elefteriou, F., Sterling, J. A. Models of bone metastasis. J Vis Exp. (67), e4260 (2012).
  23. Kang, Y. Imaging TGFbeta Signaling in Mouse Models of Cancer Metastasis. Methods Mol Biol. 1344, 219-232 (2016).
  24. Jenkins, D. E., Hornig, Y. S., Oei, Y., Dusich, J., Purchio, T. Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice. Breast Cancer Res. 7 (4), R444-R454 (2005).
  25. Lawson, D. A., et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 526 (7571), 131-135 (2015).
腫瘍の増殖と転移研究のためのトレーサブル記者との乳癌患者由来の異種移植片の標識
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Hanna, C., Kwok, L., Finlay-Schultz, More

Hanna, C., Kwok, L., Finlay-Schultz, J., Sartorius, C. A., Cittelly, D. M. Labeling of Breast Cancer Patient-derived Xenografts with Traceable Reporters for Tumor Growth and Metastasis Studies. J. Vis. Exp. (117), e54944, doi:10.3791/54944 (2016).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter