Summary

히스톤 수정 Saccharomyces cerevisiae 에서 chromatin Immunoprecipitation (칩)

Published: December 29, 2017
doi:

Summary

여기, 우리는 신진 효 모 Saccharomyces cerevisiae에서 수정 된 히스톤의 염색 질 immunoprecipitation에 대 한 프로토콜을 설명합니다. Immunoprecipitated DNA가 풍부 하 고 지역화의 게놈을 통해 히스톤 포스트 번역 상 수정 양이 많은 PCR 이후에 사용 됩니다.

Abstract

Acetylation, 메 틸 화, 인 산화, 같은 히스톤 포스트 번역 상 수정 (PTMs), 동적으로 추가 하거나 셀에서 수신 하는 신호에 대 한 응답에서 이러한 마크를 제거 하는 효소에 의해 통제 된다. 이러한 PTMS 유전자 식 제어 등 프로세스의 규정을 주요 참여자 이며 DNA 복구. Chromatin immunoprecipitation (칩) 풍요로 움과 응답 셀에 다양 한 섭으로 게놈에 걸쳐 많은 히스톤 PTMs의 지역화 해 부를 위한 경 음악 접근 되었습니다. 여기, 싹 트는 효 모 Saccharomyces cerevisiae (S. cerevisiae) 에서 post-translationally 수정된 히스톤의 칩을 수행 하기 위한 다양 한 방법을 설명 합니다. 이 방법은 단백질 및 효 모 문화의 포름알데히드 처리를 사용 하 여 DNA의 가교에 의존 구슬 치고, micrococcal nuclease에 의해 chromatin 파편의 가용 화 및 히스톤 DNA의 immunoprecipitation에 의해 효 모 lysates의 세대 단지입니다. DNA의 히스톤 마크와 관련 된 정화는 게놈에 걸쳐 여러 loci에서 그것의 농축을 평가 하기 위해 정량 PCR 분석에 복종 하 고. Wildtype에 돌연변이 효 모 히스톤 부호 H3K4me2와 H4K16ac의 지역화를 조사 하는 대표적인 실험 데이터 분석 및 해석 설명 되어 있습니다. 이 메서드는 다양 한 히스톤 PTMs 적합 하며 다른 돌연변이 체 긴장 또는 그것에 게 다른 조건 하에서 chromatin 역학에서 변경 내용을 조사 하기 위한 훌륭한 도구를 만드는 다양 한 환경 스트레스의 존재를 수행할 수 있습니다.

Introduction

히스톤의 동적 포스트 번역 상 수정 (PTM) 녹음 방송, 복제, DNA 수리1,2를 포함 하 여 많은 DNA 템플릿 프로세스에 대 한 주요 규제 메커니즘입니다. 풍부 하 고 이러한 프로세스와 부수적인 수정된 히스톤의 정확한 지 방화를 결정 하는 능력은 따라서 셀에 서로 다른 조건 하에서 그들의 규칙을 이해 중요 합니다. Chromatin immunoprecipitation (칩)의 개발을 주로 dna, 단백질의 상호 작용의 생 화 확 적인 연구에서 특히 생체 외에서 방법 화학 crosslinkers를 사용 하 여 비롯 된 방법으로 평가 하는 필요와 결합 된 동적 자연 단백질 DNA 상호 작용에서 vivo에서 그리고 게놈3,,45의 특정 지역에서. 정량 PCR (정량) 및 시퀀싱 기술의 발전 또한 양적 비교와 전체 게놈, DNA 단백질 상호 작용에서 해 부를 위한 강력한 도구를 만드는 걸쳐 칩 실험을 수행 하는 기능을 확장 했다 여러 수준입니다.

현재, 칩은 연구 그룹 게놈의 chromatin 중재 규정에 관심이 필요한 메서드 수정된 히스톤과는 특정 genomic 소재 시 에 사이의 물리적 링크를 직접 심문 없습니다 유사한 방법으로 vivo. 다음 세대 시퀀싱 게놈6,7 통해 히스톤 수정 지도를 사용 하 여이 방법의 변이 사용할 수 있지만 이러한 접근 다른 과학적인 질문 및 그들의 규모, 비용을 해결할 수 있습니다. 그리고 기술 리소스 일부 연구 그룹에 대 한 제한 될 수 있습니다. 또한, 대상된 칩-정량은이 보완 하기 위해 필요한 접근 방법을 모두를 제공 하 여 epigenomic 데이터 집합에서 결과 유효성을 검사 하 고 시퀀싱 전에 칩 프로토콜 최적화. 그러나 질량 분석 기반 접근,8,,910,11, 등장 게놈 지역 연관 표시는 또한 히스톤의 완전 한 보완을 식별이 접근 제한이 몇 가지는 게놈의 지구를 탐색할 수 및 그들이 필요한 전문 기술 및 계측을 모든 연구 그룹을 사용할 수 없습니다. 따라서, 칩 풍부 및 히스톤 수정 epigenetics, chromatin의 게놈 기능 규정에 관심이 모든 연구 단체에 대 한 다양 한 조건에서의 배포를 분석 하는 기초 방법에 남아 있다.

여기, 신진 누 룩을 사용 하 여 칩 모델 Saccharomyces cerevisiae (S. cerevisiae) 히스톤 PTMs chromatin에서의 분포를 조사 하는 방법을 설명 합니다. 이 이렇게 다양 한 칩 프로토콜 누 룩 개발 하 고 다양 한 모델 시스템12,13에 적용의 핵심 구성 요소에 의존 합니다. 수정된 히스톤과 DNA는 셀에서 간의 상호 작용은 포름알데히드와 가교에 의해 유지 됩니다. Lysate 준비 다음 염색 질 조각은 micrococcal nuclease와 소화에 의해 균일 하 게 크기의 조각으로 solubilized는. Immunoprecipitation 수정된 히스톤의 상업적 또는 실험실에서 생성 된 항 체와 함께 수행 되 고 모든 관련된 DNA 분리 및 정량 (그림 1)를 사용 하 여 게놈 지역에서 농축에 대 한 분석. 많은 히스톤 수정에 대 한이 프로토콜에서 얻은 DNA의 양을 정량 하 여 25 개 이상의 다른 게놈 loci를 테스트 하기 위해 충분 하다.

이 칩 방법은 매우 다양 한 여러 개의 돌연변이 체 긴장 또는 환경 조건, 단일 히스톤 수정 배포 모니터링을 위한 또는 wildtype 세포 게놈 loci의 숫자에 여러 개의 히스톤 수정 테스트입니다. 또한, 프로토콜의 수많은 구성 요소 중 높은-또는 미 천 한-풍부한 히스톤 부호의 최적화를 쉽게 조정 가능 하다. 마지막으로, 싹 트는 효 모에 수정 된 히스톤의 칩을 수행 크게 다른 시스템에서 사용할 수 있는 항 체 특이성에 대 한 주요 컨트롤을 사용 하 여 기회를 제공 한다. 즉, 효 모 종자 수 수정에 대 한 타겟으로하는 히스톤 잔류물에서 점 돌연변이 생성 되 고, 어떤 경우에는 특정 히스톤 잔류물에 수정 catalyzes만 단일 효소 (. 히스톤 lysine methyltransferases)입니다. 따라서, 칩 중 히스톤 돌연변이 또는 효소 삭제 긴장 시험의 범위는 비 특정 바인딩 항 체의 발생 그리고 거짓 긍정적인 결과 생성 하에서 수행할 수 있습니다. 이 컨트롤은 새로 개발 된 항 체에 특히 중요 하 고 심지어 다른 시스템에서 사용 하기 전에 보존된 히스톤 수정에 대 한 항 체 특이성을 확인 하는 데 사용할 수 있습니다. 이 이렇게 보완 (예: 모노-디-, 트라이-메 틸), 다른 수정 상태 사이에서 구별 하는 항 체 특이성을 테스트 하려면 다른 방법 수정된 펩 티 드의 배열 조사 등 수행 하는 히스톤의 서쪽 오 점 또는 nucleosomes 정의 수정입니다. 전반적으로, 싹 트는 효 모에 칩 게놈 전체 PTMs 히스톤의 역학을 평가 하 고 그들의 규칙을 경 세 하는 메커니즘을 해 부에 대 한 강력한 방법입니다.

Protocol

1. 미리 바인딩합니다 자성 구슬에 항 체 단백질 A/G 자석 구슬을 잘 혼합 하 고 1.5 mL 튜브에의 한 immunoprecipitation (IP) 샘플 당 자석 구슬 20 µ L를 전송.참고: pipetting 구슬, 넓은 구멍, 낮은 고정 팁 사용. 마그네틱 스탠드에 구슬 가진 튜브를 놓고 구슬 튜브에 수집을 허용 합니다. 제거는 상쾌한. 워시 3 번 감기 Tris 버퍼 염 분 (TBS) (50 mM Tris HCl pH 7.5, 150 mM NaCl)의 1 mL와 구슬.</l…

Representative Results

이 프로토콜의 한 핵심 구성 요소는 단계 10에서 설명한 녹는 조각으로는 염색 질을 소화 하는 데 사용 된 micrococcal nuclease (MNase)의 농도 최적화입니다. 이것은 관심의 게놈 영역에서 히스톤 수정 배포에 대 한 고해상도 데이터를 얻기 위해 중요입니다. MNase 적정 수용 성 염색 질 분수에 디 nucleosomes의 작은 금액으로 주로 모노 nucleosomes를 달성 하기 위해 가장 적합 한 농도 결…

Discussion

여기에 설명 된 절차는 immunoprecipitation에 의해 효 모 세포에 수정 된 히스톤과 관련 된 DNA의 효율적인 복구에 대 한 수 있습니다. 이것은 정량 Pcr 증폭 지역 농축 결정 관심 영역 또는 특정 히스톤 수정의 소모는 뇌관을 사용 하 여 옵니다. 개발 되 고 있는 방법으로 거의 20 년 전에 불구 하 칩 히스톤 수정 상태 다른 게놈 영역에 다양 한 조건 하에서 조사 정의 분석 결과 남아 있습니다. 칩 결합 차세…

Disclosures

The authors have nothing to disclose.

Acknowledgements

저자는 유용한 토론에 대 한 녹색 연구소의 회원을 감사 하 고 싶습니다. 이 작품은 NIH 교부 금 R03AG052018와 E.M.G.에 R01GM124342에 의해 부분적으로 지원

Materials

Yeast Extract Research Products International (RPI) Y20025-1000.0
Peptone Research Products International (RPI) P20250-1000.0
Dextrose ThermoScientific BP350-1
Formaldehyde Sigma-Aldrich F8775
Glycine Fisher Scientific AC12007-0050
Tris Amresco 0497-5KG
EDTA Sigma-Aldrich E6758-500G
NaCl ThermoScientific BP358-10
4-Nonylphenyl-polyethylene glycol Sigma-Aldrich 74385 Equivalent to NP-40
MgCl ThermoScientific S25533
CaCl2 Sigma-Aldrich 20899-25G-F
LiCl ThermoScientific AC413271000
Sodium Dodecyl Sulfate Amresco M107-1KG
Sodium Deoxycholate Sigma-Aldrich 30970-100G
Sodium Acetate Sigma-Aldrich S2889
NaHCO3 ThermoScientific S25533
PMSF Sigma-Aldrich P7626-5G
Yeast protease inhibitor cocktail VWR 10190-076
25 Phenol:24 Chloroform:1 Isoamyl Alcohol VWR Life Science 97064-824
Ethanol Sigma-Aldrich E7023
Nuclease-Free Water VWR 100720-992
Micrococcal Nuclease Worthington Biochemical LS004797
Glycogen ThermoScientific R0561
Proteinase K Research Products International (RPI) P50220-0.1
RNase A  Sigma-Aldrich R6513-50MG
 Bradford Assay Reagent ThermoScientific 23238
 BSA Standard 2 mg/mL ThermoScientific 23210
α H4 EMD Millipore 04-858
α H4K16ac EMD Millipore ABE532
α H3 Abcam ab1791
α H3K4me2 Active Motif 39142
 High Rox qPCR Mix Accuris qMax Green, Low Rox qPCR Mix ACC-PR2000-L-1000
Protein A/G Magnetic Beads ThermoScientific 88803
magnetic stand for 1.5mL tubes Fisher Scientific PI-21359
Acid-Washed Glass Beads Sigma-Aldrich G8772
 Microtube Homogenizer Benchmark D1030
2.0 mL screw-cap tubes with sealing rings Sigma-Aldrich Z763837-1000EA
Gel loading tips Fisher Scientific 07-200-288
Cuvettes Fisher Scientific 50-476-476
Parafilm Fisher Scientific 13-374-10
50 mL conical tubes Fisher Scientific 14-432-22
384-Well PCR Plate Fisher Scientific AB-1384W
 Gyratory Floor Shaker New Brunswick Scientific Model G10
Spectrophotometer ThermoScientific ND-2000c
 Real-Time PCR Detection System Bio-Rad 1855485

References

  1. Jaiswal, D., Turniansky, R., Green, E. M. Choose Your Own Adventure: The Role of Histone Modifications in Yeast Cell Fate. J Mol Biol. 429 (13), 1946-1957 (2017).
  2. Suganuma, T., Workman, J. L. Signals and combinatorial functions of histone modifications. Annu Rev Biochem. 80, 473-499 (2011).
  3. Solomon, M. J., Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. P Natl Acad Sci USA. 82 (19), 6470-6474 (1985).
  4. Solomon, M. J., Larsen, P. L., Varshavsky, A. Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell. 53 (6), 937-947 (1988).
  5. Gilmour, D. S., Lis, J. T. Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. P Natl Acad Sci USA. 81 (14), 4275-4279 (1984).
  6. Lefrançois, P., et al. Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics. 10, 37 (2009).
  7. Furey, T. S. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet. 13 (12), 840-852 (2012).
  8. Déjardin, J., Kingston, R. E. Purification of proteins associated with specific genomic Loci. Cell. 136 (1), 175-186 (2009).
  9. Byrum, S. D., Raman, A., Taverna, S. D., Tackett, A. J. ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Rep. 2 (1), 198-205 (2012).
  10. Soldi, M., Bremang, M., Bonaldi, T. Biochemical systems approaches for the analysis of histone modification readout. Biochim Biophys Acta. 1839 (8), 657-668 (2014).
  11. Soldi, M., Bonaldi, T. The ChroP approach combines ChIP and mass spectrometry to dissect locus-specific proteomic landscapes of chromatin. J Vis Exp. (86), (2014).
  12. Kuo, M. H., Allis, C. D. In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment. Methods. 19 (3), 425-433 (1999).
  13. Meluh, P. B., Broach, J. R. Immunological analysis of yeast chromatin. Methods Enzymol. 304, 414-430 (1999).
  14. Rozen, S., Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 132, 365-386 (2000).
  15. Taylor, S., Wakem, M., Dijkman, G., Alsarraj, M., Nguyen, M. A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods. 50 (4), S1-S5 (2010).
  16. Rodríguez, A., Rodríguez, M., Córdoba, J. J., Andrade, M. J. Design of primers and probes for quantitative real-time PCR methods. Methods Mol Biol. 1275, 31-56 (2015).
  17. Briggs, S. D., et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Gene Dev. 15 (24), 3286-3295 (2001).
  18. Bernstein, B. E., et al. Methylation of histone H3 Lys 4 in coding regions of active genes. P Natl Acad Sci USA. 99 (13), 8695-8700 (2002).
  19. Pokholok, D. K., et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell. 122 (4), 517-527 (2005).
  20. Krogan, N. J., et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell. 11 (3), 721-729 (2003).
  21. South, P. F., Harmeyer, K. M., Serratore, N. D., Briggs, S. D. H3K4 methyltransferase Set1 is involved in maintenance of ergosterol homeostasis and resistance to Brefeldin A. P Natl Acad Sci USA. 110 (11), E1016-E1025 (2013).
  22. Margaritis, T., et al. Two distinct repressive mechanisms for histone 3 lysine 4 methylation through promoting 3′-end antisense transcription. PLoS Genet. 8 (9), e1002952 (2012).
  23. Jezek, M., et al. The histone methyltransferases Set5 and Set1 have overlapping functions in gene silencing and telomere maintenance. Epigenetics. 12 (2), 93-104 (2017).
  24. Suka, N., Luo, K., Grunstein, M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet. 32 (3), 378-383 (2002).
  25. Kimura, A., Umehara, T., Horikoshi, M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet. 32 (3), 370-377 (2002).
  26. Rothbart, S. B., et al. An Interactive Database for the Assessment of Histone Antibody Specificity. Mol Cell. 59 (3), 502-511 (2015).

Play Video

Cite This Article
Jezek, M., Jacques, A., Jaiswal, D., Green, E. M. Chromatin Immunoprecipitation (ChIP) of Histone Modifications from Saccharomyces cerevisiae. J. Vis. Exp. (130), e57080, doi:10.3791/57080 (2017).

View Video