Summary

Epitheliale Korneaabnutzung mit okulärer Burr als Modell für die Hornhaut Wundheilung

Published: July 10, 2018
doi:

Summary

Dieses Protokoll beschreibt eine Methode, einen Abrieb auf der Augenoberfläche der Maus zuzufügen und die Wundheilung danach zu folgen. Das Protokoll nutzt eine augenfällige Grat, teilweise das oberflächenepithel des Auges in narkotisierter Mäuse zu entfernen.

Abstract

Die murine Hornhaut bietet ein hervorragendes Modell um die Wundheilung zu studieren. Die Hornhaut ist die äußerste Schicht des Auges, und somit ist die erste Verteidigungslinie zu Verletzungen. In der Tat ist die häufigste Art von Verletzungen am Auge gefunden in Klinik ein korneaabnutzung. Hier nutzen wir eine augenfällige Grat um einen Abrieb was Entfernung des Hornhaut-Epithel in Vivo an narkotisierten Mäusen zu induzieren. Diese Methode ermöglicht gezielte und reproduzierbare epithelialen Störung, wobei andere Bereiche intakt bleiben. Darüber hinaus wir beschreiben die Visualisierung der abgeriebenen Epithel mit Fluorescein beflecken und liefern konkrete Ratschläge wie man die abgeriebenen Hornhaut zu visualisieren. Dann folgen wir die Zeitleiste der Wundheilung 0, 18 und 72 h nach Abrieb, bis die Wunde wieder epithelialized ist. Die epithelialen Abrieb Modell der Verletzung der Hornhaut ist ideal für Studien zur epithelialen Zell-Proliferation, Migration und Re Epithelisierung der Hornhaut Schichten. Diese Methode ist jedoch nicht optimal Stromazellen Aktivierung bei der Wundheilung, zu studieren, weil der okuläre Grat nicht um die Stromale Zellschichten eindringt. Diese Methode ist auch geeignet für klinische Anwendungen, z. B. der präklinischen Prüfung der Wirksamkeit der Droge.

Introduction

Epitheliale Schichten zahlreiche Organe sind Verletzungen ausgesetzt. Sie enthalten jedoch auch die Möglichkeit zum Ausgleich Gewebeverlust durch Wundheilung. Die Hornhaut bietet ein hervorragendes Modell um die Wundheilung zu studieren. Es bildet die äußere Oberfläche des Auges und bietet eine Schutzschicht für die sensible okuläre Maschinen. So funktioniert Hornhaut als eine physikalische Barriere gegenüber Krankheitserregern und Wasserverlust. Es besteht aus drei Schichten; Epithel, Stroma und Endothel. Das Epithel der Hornhaut bildet die äußerste Schicht der Hornhaut. Epithelzellen pflegen die Barrierefunktion der Hornhaut durch die Einhaltung streng miteinander durch tight Junctions1,2,3. Eine azelluläre Hornhaut Basalmembran, die Bowman-Membran trennt das Epithel aus der umfangreichen Stroma, das feuerfeste keratozyten enthält. Unter das Stroma Kanal endotheliale Zellen Nährstoffe, Wasser und Sauerstoff, die obere Schicht.

Hornhauterosionen sind sehr häufig in der Klinik4. Verletzungen der Hornhaut sind vielfältig, aber vor allem durch kleine Partikel wie Staub oder Sand, Kratzer oder andere Fremdkörper verursacht werden. Das Protokoll beschrieben hier zielt auf eine klinisch relevante Art von epithelialen korneaabnutzung zu reproduzieren. Dabei bietet dieses Protokoll eine kontrollierbare und bahnbrechende Methode für Kliniker und Wissenschaftler Hornhaut, in eigenen Studien zu implementieren. Wir haben eine in Vivo Verletzung Reparatur Assays auf der murinen Hornhaut durch Anrauen des Gewebes mit einer getrübten okuläre Burr, Algerbrush II durchgeführt. Unser Ziel hier, den Abrieb nur auf der zentralen Hornhaut-Epithel und lassen Sie die anderen Teile der Orgel ohne Schaden. So, das Protokoll ist ideal, um Studie Hornhaut Epithelzelle Dynamik oder der Basalmembran während Re Epithelisierung, Migration, Proliferation und Differenzierung in Vivo5Zelle. Vor kurzem wurde dieses Modell zum Analysieren der Stammvater Zelldynamik in der murinen Hornhaut als auch hinsichtlich der Kapazität der differenzierten Hornhaut epithelialen Zellen bei der Neugründung der Hornhaut Stammzellnische nach Verletzungen6,7zu enthüllen. Nach Abrieb kehrt die Hornhaut zu seiner normalen Transparenz und Zugfestigkeit. Interessant ist, eine in-vitro- Studie angedeutet, dass re Epithelisierung ohne erhöhte Zelle Verbreitung8tritt. Dieses Protokoll beschreibt die Zeitachse der ununterbrochenen Heilung in der murinen Hornhaut. Die Methode ist somit anwendbar, die Wirkung von Medikamenten auf die Heilung von Mustern und Geschwindigkeit zu testen.

Die Hornhaut ist beträchtlich für Wundheilung Studien benutzt worden. Jedoch haben viele Studien auf andere Modelle der Verletzung verlassen. Ein gut etabliertes Modell der Verletzung der Hornhaut ist die alkalische brennen, die durchgeführt wird, durch die Anwendung von Natriumhydroxid (NaOH) mit oder ohne Filterpapier auf die Hornhaut-Oberfläche-9. Alkalische Exposition führt zu einer großen und diffuse Verletzung, die betrifft nicht nur das Hornhaut-Epithel, sondern auch die Bindehaut und Stroma9,10. Starke alkalische Lösungen nachweislich hornhautgeschwüren, eintrübt und Neovaskularisation9induzieren. Entzündungszellen dringen in das Stroma in der Regel innerhalb von 6 h und bleiben dort bis zum 24 h-11. Somit ist alkalisch Verletzungen eine ratsam Methode in Studien im Zusammenhang mit Stromazellen Aktivierung. Eine andere Art von chemischen Verletzungen kann durch die Anwendung von Dimethyl Sulfoxid (DMSO) zugefügt werden, auf die Hornhaut9,10. Andere häufig verwendete Verletzungen Modelle umfassen incisional Wunden, die durch die Stroma und Keratektomie Wunden eindringen, die auf den oberen Teil der Stroma14,15beschränkt sind. Diese Methoden eignen sich auch zur Rede und Antwort bezüglich Stromazellen Wundheilung. Verschiedene Verletzungen Modelle haben ihre eigenen vor- und Nachteile. Abrieb oder Debridement, der das Hornhaut-Epithel wurde zuerst mit getrübten Skalpelle oder klingen auf ex Vivo Hornhaut16entwickelt. Diese Methode wurde später verwendet in Vivo auf Maus, Ratte und Kaninchen17,18,19,20,21,22. Mit Hilfe des okulären Grates (Abbildung 1), entfernen wir nur einen ausgewählten Bereich des Epithels, ohne Auswirkung auf den Rest des Epithels. Auf diese Weise ist es möglich auf die epithelialen Entfernung zu den verschiedenen Teilen der Hornhaut. Darüber hinaus kann die Größe der Abrieb mit Fluorescein Beflecken beurteilt werden. Darüber hinaus folgen wir hier Abrieb Schließung während der Einheilphase.

Diese Methode birgt einige Vorteile, i) einschließlich der genauen Standort der Abrieb Website, die nicht mit chemischen Verletzungen möglich ist, (Ii) der Abrieb ist schnell durchzuführen, und (Iii) Es ist nicht-invasiv. Hier beschreiben wir die Methode mit der outbred NMRI Maus als Modell, aber dies angewendet werden könnte, die breite Palette von genetischer Mausmodelle sowie der Ratte und Kaninchen, die gängigen Modelle zur Untersuchung der menschlichen Hornhaut Störungen sind.

Protocol

Alle Experimente werden von den nationalen Tierversuch Board genehmigt. 1. Vorbereitungen Bereiten Sie alle Lösungen und halten bei Raumtemperatur, wenn nicht anders angegeben. Befolgen der Abfallentsorgung zu entsorgen verwendete Materialien und Lösungen. Verwendung NMRI und ICR fremd-Bestände Alter zwischen 4 und 12 Wochen und beiderlei Geschlechts. Wenn den Stamm C57BL/6 verwenden, folgen Sie den Ketamin-Medetomidine Vorbereitung Methode im Schritt 1.3.2. Folgen Sie f…

Representative Results

Dieses Protokoll beschreibt ein Modell, um eine Verletzung der Maus Hornhaut Abrieb zufügen und Lösungsvorschläge zu folgen und den Heilungsprozess nach Abrieb zu visualisieren. Vor kurzem haben wir diese Methode zur Untersuchung der Rolle von Hornhaut epithelialen Progenitorzellen bei Wundheilung6beschäftigt. Der Einsatz von etablierten Werkzeugen ist der Schlüssel zu einer erfolgreichen Abrieb-Experiment. Wir und andere haben den Algerbrush II okulären Grat…

Discussion

Verwundung Methoden sind populäre Werkzeuge, verschiedene Aspekte der Hornhaut Homöostase und Pathologien zu studieren. Der Abrieb-Modell bietet eine gut kontrollierte Methode zur relevanten Probleme in der Augenheilkunde. Allerdings sind einige kritische Punkte im Protokoll hervorzuheben. Insbesondere die Details bezüglich der Veterinärmedizin, heilende Wunde Timeline und Ergebnis skizziert sind optimiert für den Einsatz mit fremd-NMRI und ICR-Aktien, aber können unter Stämme von Mäusen26

Disclosures

The authors have nothing to disclose.

Acknowledgements

Wir möchte Kaisa Ikkala für ihre wertvolle technische Hilfe und aufschlussreiche Hilfe, wenn Sie diese Methode Aktualisierungstendenz sowie später bei der Umsetzung auf unsere zentralen Forschungsfragen zu danken. Wir möchten auch Laboratory Animal Center und Anna Meller für ihre Hilfe bei der Planung der Richtlinien der tierärztlichen Arbeit danken.

Materials

NMRI mouse Envigo 275
0.9% NaCl use sterile
Medetomidine Vetmedic Vnr087896 Market name: Cepetor Vet
Ketamine Intervet Vnr511485 Market name: Ketaminol Vet
Buprenorfin Invidior 3015248 Market name: Temgesic
Atipamezol Orion Pharma Vnr471953 Market name: Antisedan Vet
Carprofen Norbrook Vnr027579 Market name: Norocarp Vet
1% fucidin acid eye ointment Dechra Vnr080899 Market name: Isathal
Fluorescein salt Sigma-Aldrich F6377
Phosphate-buffered saline solution PBS
Algerbrush ii ocular burr (0.5 mm tip) Algerbrush 6.39768E+11
Cobalt Blue pen light SP Services DE/003
Hot plate Kunz Instruments 2007-0217
Digital SLR camera Nikon D80
Adjustable camera arm and clamp Neewer 10086132 Height 28 cm
Table lamp with a flexible arm and a clamp Prisma
Soft wipe KimtechScience 7552
CO2 chamber
Dissection toolset Fine Science Tools
Syringes Beckton Dickinson 303172
26G needles Beckton Dickinson 303800
2 mL Eppendorf tube Sarstedt 689
Tissue casette Sakura Finetech 4118F
Tissue processing machine ASP200S Leica
Xylene VWR UN1307
Paraffin wax Millipore K95523361
Tissue embedding mold 32 x 25 x 6 mm Sakura Finetech 4123
Microtome Microm HM355
Water bath for sectioning Orthex 60591
Water bath for sectioning Leica HI1210
Microtome blade Feather S35
Glass slide Th.Geyer GmbH & Co. 7,695,019
Ultrapure water Millipore MPGP04001 MilliQ
Paraformaldehyde Sigma-Aldrich 158127 PFA

References

  1. Yi, X., Wang, Y., Yu, F. S. Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Investigative Ophthalmology & Visual Science. 41 (13), 4093-4100 (2000).
  2. Wang, Y., Chen, M., Wolosin, J. M. ZO-1 In Corneal Epithelium; Stratal Distribution and Synthesis Induction by Outer Cell Removal. Experimental Eye Research. 57 (3), 283-292 (1993).
  3. Sugrue, S. P., Zieske, J. D. ZO1 in Corneal Epithelium: Association to the Zonula Occludens and Adherens Junctions. Experimental Eye Research. 64 (1), 11-20 (1997).
  4. Jackson, H. Effect of eye-pads on healing of simple corneal abrasions. British Medical Journal. 2 (5200), 713 (1960).
  5. Stepp, M. A., et al. Wounding the cornea to learn how it heals. Experimental Eye Research. 121, 178-193 (2014).
  6. Kalha, S., Shrestha, B., Sanz Navarro, M., Jones, K. B., Klein, O. D., Michon, F. Bmi1+ Progenitor Cell Dynamics in Murine Cornea During Homeostasis and Wound Healing. Stem Cells. , (2018).
  7. Nasser, W., et al. Corneal-Committed Cells Restore the Stem Cell Pool and Tissue Boundary following Injury. Cell Reports. 22 (2), 323-331 (2018).
  8. Kaplan, N., Fatima, A., Peng, H., Bryar, P. J., Lavker, R. M., Getsios, S. EphA2/Ephrin-A1 Signaling Complexes Restrict Corneal Epithelial Cell Migration. Investigative Ophthalmology & Visual Science. 53 (2), 936 (2012).
  9. Bai, J. -. Q., Qin, H. -. F., Zhao, S. -. H. Research on mouse model of grade II corneal alkali burn. International Journal of Ophthalmology. 9 (4), 487-490 (2016).
  10. Chan, M. F., et al. Protective effects of matrix metalloproteinase-12 following corneal injury. Journal of Cell Science. 126, 3948-3960 (2013).
  11. Byeseda, S. E., Burns, A. R., Dieffenbaugher, S., Rumbaut, R. E., Smith, C. W., Li, Z. ICAM-1 is necessary for epithelial recruitment of gammadelta T cells and efficient corneal wound healing. American Journal of Pathology. 175 (2), 571-579 (2009).
  12. Amitai-Lange, A., et al. A Method for Lineage Tracing of Corneal Cells Using Multi-color Fluorescent Reporter Mice. Journal of Visualized Experiments. (106), e53370 (2015).
  13. Amitai-Lange, A., Altshuler, A., Bubley, J., Dbayat, N., Tiosano, B., Shalom-Feuerstein, R. Lineage Tracing of Stem and Progenitor Cells of the Murine Corneal Epithelium. Stem Cells. 33 (1), 230-239 (2015).
  14. Blanco-Mezquita, J. T., Hutcheon, A. E. K., Stepp, M. A., Zieske, J. D. αVβ6 Integrin Promotes Corneal Wound Healing. Investigative Ophthalmology & Visual Science. 52 (11), 8505 (2011).
  15. Blanco-Mezquita, J. T., Hutcheon, A. E. K., Zieske, J. D. Role of Thrombospondin-1 in Repair of Penetrating Corneal Wounds. Investigative Ophthalmology & Visual Science. 54 (9), 6262 (2013).
  16. Gipson, I. K., Kiorpes, T. C. Epithelial sheet movement: Protein and glycoprotein synthesis. Developmental Biology. 92 (1), 259-262 (1982).
  17. Danjo, Y., Gipson, I. K. Actin "purse string" filaments are anchored by E-cadherin-mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated cell movement. Journal of Cell Science. 111, 3323-3332 (1998).
  18. Lyu, J., Joo, C. -. K. Wnt-7a up-regulates matrix metalloproteinase-12 expression and promotes cell proliferation in corneal epithelial cells during wound healing. Journal of Biological Chemistry. 280 (22), 21653-21660 (2005).
  19. Nagata, M., Nakamura, T., Hata, Y., Yamaguchi, S., Kaku, T., Kinoshita, S. JBP485 promotes corneal epithelial wound healing. Science Reports. 5, 14776 (2015).
  20. Stepp, M. A., Zhu, L., Cranfill, R. Changes in beta 4 integrin expression and localization in vivo in response to corneal epithelial injury. Investigative Ophthalmology & Visual Science. 37 (8), 1593-1601 (1996).
  21. Stepp, M. A., Zhu, L. Upregulation of alpha 9 integrin and tenascin during epithelial regeneration after debridement in the cornea. Journal of Histochemistry & Cytochemistry. 45 (2), 189-201 (1997).
  22. Pal-Ghosh, S., Tadvalkar, G., Jurjus, R. A., Zieske, J. D., Stepp, M. A. BALB/c and C57BL6 mouse strains vary in their ability to heal corneal epithelial debridement wounds. Experimental Eye Research. 87 (5), 478-486 (2008).
  23. . Lab Animal Research. Rodent Handling and Restraint Techniques Available from: https://www.jove.com/science-education/10221/rodent-handling-and-restraint-techniques (2018)
  24. Pal-Ghosh, S., Pajoohesh-Ganji, A., Tadvalkar, G., Stepp, M. A. Removal of the basement membrane enhances corneal wound healing. Experimental Eye Research. 93 (6), 927-936 (2011).
  25. Suzuki, K. Cell-matrix and cell-cell interactions during corneal epithelial wound healing. Progress in Retinal and Eye Research. 22 (2), 113-133 (2003).
  26. Sato, Y., Seo, N., Kobayashi, E. Genetic background differences between FVB and C57BL/6 mice affect hypnotic susceptibility to pentobarbital, ketamine and nitrous oxide, but not isoflurane. Acta Anaesthesiologica Scandinavica. 50 (5), 553-556 (2006).
  27. Pajoohesh-Ganji, A., Pal-Ghosh, S., Tadvalkar, G., Stepp, M. A. K14 + Compound niches are present on the mouse cornea early after birth and expand after debridement wounds. Developmental Dynamics. 245 (2), 132-143 (2016).
  28. Boote, C., et al. Quantitative Assessment of Ultrastructure and Light Scatter in Mouse Corneal Debridement Wounds. Investigative Ophthalmology & Visual Science. 53 (6), 2786 (2012).
  29. Pal-Ghosh, S., et al. MMP9 cleavage of the β4 integrin ectodomain leads to recurrent epithelial erosions in mice. Journal of Cell Science. 124 (Pt 15), 2666-2675 (2011).
  30. Pal-Ghosh, S., Pajoohesh-Ganji, A., Brown, M., Stepp, M. A. A mouse model for the study of recurrent corneal epithelial erosions: alpha9beta1 integrin implicated in progression of the disease. Investigative Ophthalmology & Visual Science. 45 (6), 1775-1788 (2004).

Play Video

Cite This Article
Kalha, S., Kuony, A., Michon, F. Corneal Epithelial Abrasion with Ocular Burr As a Model for Cornea Wound Healing. J. Vis. Exp. (137), e58071, doi:10.3791/58071 (2018).

View Video