Summary

沙门氏菌筛选的高通量平台.

Published: November 07, 2018
doi:

Summary

沙门氏菌是腹泻的常见病原体。在这里, 我们描述了一个高通量平台, 用于筛选沙门氏菌spp./志贺氏菌pp. 结合引导培养。

Abstract

急性胃肠炎的粪便-口腔传播不时发生, 特别是当处理食物和水的人感染沙门氏菌时. 沙门氏菌的金标准检测方法是直接培养, 但劳动强度大 , 耗时。在这里, 我们描述了一个高通量平台的沙门氏菌 spp/贺氏菌筛选, 利用实时聚合酶链反应 (pcr) 结合引导培养。主要有两个阶段: 实时 pcr 和引导培养。对于第一阶段 (实时 pcr), 我们解释了该方法的每个步骤: 样本采集、预富集、dna 提取和实时 pcr。如果实时 pcr 结果为阳性, 则进行第二阶段 (引导培养): 选择性培养、生化鉴定和血清学表征。我们还说明了由此产生的代表性成果。这里描述的协议将是一个有价值的平台, 用于沙门氏菌的快速、特异、敏感和高通筛选。

Introduction

腹泻仍然是一个常见的健康问题, 在全球范围内发病率很高, 为1,2。虽然死亡率相对较低, 但一些患者出现了数周的各种症状 (如大便松动、水汪汪, 紧急去洗手间), 这使得社会经济影响非常高3,4.更严重的是, 一些患者甚至可能发展肠易激综合征,如果不治疗5。有各种各样的细菌、病毒和寄生虫会引起腹泻.沙门氏菌是传播急性肠胃炎 7891011的最常见细菌之一。因此, 许多县颁布了法律或条例, 对处理食物和水人进行定期沙门氏菌检查。例如, 中国政府每年颁布一次强制性沙门氏菌筛查法律.

沙门氏菌的金标准检测方法是细菌培养.通过细菌培养和连续的生化鉴定和血清学鉴定, 可以识别细菌的种类, 这可以促进疾病爆发管理和抗菌分析, 帮助患者治疗 “12. 它还可以帮助追踪沙门氏菌疫情期间的感染源. 然而, 这种方法是劳动密集型的 (需要手动操作) 和耗时 (需要几天), 特别是用于测试大量的样品 7.此外,在一些粪便样本中可能存在可行但不可培养的沙门氏菌.鉴于这些缺点, 许多实验室试图开发检测沙门氏菌的新技术. ,19,20,21,22,23,24,25. 所有这些方法都采用了核酸扩增试验, 其中最常见的是聚合酶链反应。这些基于 naat 的方法的一个主要局限性是, 死细菌, 甚至含有不完整基因组 dna 的细菌碎片, 可以显示出阳性的结果26, 这可能会在很大程度上影响疾病的准确诊断。blanco等人表示, 分子检测是高度敏感的, 不仅对培养中可行的沙门氏菌, 而且对部分基因组和死细菌或过去污染的不可行细菌也是如此.因此, 应开发新技术。

在这里, 我们描述了一种结合基于 naat 的方法和培养的新方法。如图 1所示, 这种新方法首先应用实时 pcr 筛选, 然后发送阳性样本进行细菌培养和鉴定。

Protocol

该协议遵循珠海国际旅游医疗中心人类研究伦理委员会制定的指导方针。请在实验过程中使用标准的无菌操作。 1. 文化媒体的构成与准备 准备营养肉汤: 溶解1% 的肽, 0.3% 牛肉提取物, 0.5% 氯化钠, 0.1% 葡萄糖在 h2o, 调整 ph 值7.5, 并在121°c 高压灭菌15分钟。 制备硒酸盐培养基: 溶解0.5% 肽, 0.4% 乳糖, 1%Na 2hco 3, 0.4% 钠硒酸钠,0.001% l-胱氨酸在 h2…

Representative Results

该程序用于筛选处理食物和水的人的肛门粪便样本中的沙门氏菌。 在实时 pcr 步骤中, 如图 5a 所示, 在 hex 通道中进行了成功的扩增, 这意味着混合样品对沙门氏菌的治疗呈阳性。然后对单个样本进行了进一步的实时 pcr, 组成了阳性样本。如图 5…

Discussion

由于沙门氏菌经常与食物中毒和急性胃肠炎的粪便-口腔传播有关, 常规方法要么劳动密集型, 要么耗时7、利用实时 pcr 与引导培养相结合, 描述沙门氏菌筛查的高通量平台。

有几个步骤需要考虑, 以最大限度地提高该平台的能力。第一个是营养肉汤 (步骤 2.2) 中样品的浓缩前步骤。虽然?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了珠海科技项目 (赠款编号 20171009e030064)、广东省科技项目 (赠款编号 2015a0202211004) 和综合管理科学技术计划的支持。中华人民共和国质量监督检验检疫局 (补助金编号 2016ik302, 2017ik224)。

Materials

Tris Sigma 10708976001
EDTA Sigma 798681
NP40 Sigma 11332473001
ddH2O Takara 9012
PrimeSTAR HS (Premix) Takara R040Q
Nutrient Broth LandBridge CM106
Nutrient agar LandBridge CM107
Selenite Cystine medium LandBridge CM225
XLD LandBridge CM219
MAC  LandBridge CM908
Salmonella chromogenic agar CHROMagar SA130
Salmonella diagnostic serum Tianrun SAL60
Shigella diagnostic serum Tianrun SHI54
anal swab (collecting tube plus) Huachenyang
slide Mingsheng 7102
micro-loop Weierkang W511
incubator Jinghong DNP-9082
autoclave AUL SS-325
dry bath Jinghong KB-20
automated microbial identification system bioMérieux VITEK2 other equivalent system could be used
fluorescent real-time PCR machine ThermoFisher ABI7500 other equivalent machine could be used

References

  1. Roy, S. L., Scallan, E., Beach, M. J. The rate of acute gastrointestinal illness in developed countries. Journal of Water and Health. 4, 31-69 (2006).
  2. Wilking, H., et al. Acute gastrointestinal illness in adults in Germany: a population-based telephone survey. Epidemiology and Infection. 141 (11), 2365-2375 (2013).
  3. Friesema, I. H. M., Lugnér, A. K., van Duynhoven, Y. T. H. P. Costs of gastroenteritis in the Netherlands, with special attention for severe cases. European Journal of Clinical Microbiology & Infectious Diseases. 31 (8), 1895-1900 (2012).
  4. Henson, S. J., et al. Estimation of the costs of acute gastrointestinal illness in British Columbia, Canada. International Journal of Food Microbiology. 127 (1-2), 43-52 (2008).
  5. Okhuysen, P. C., Jiang, Z. D., Carlin, L., Forbes, C., DuPont, H. L. Post-diarrhea chronic intestinal symptoms and irritable bowel syndrome in North American travelers to Mexico. The American Journal of Gastroenterology. 99 (9), 1774-1778 (2004).
  6. Wongboot, W., Okada, K., Chantaroj, S., Kamjumphol, W., Hamada, S. Simultaneous detection and quantification of 19 diarrhea-related pathogens with a quantitative real-time PCR panel assay. Journal of Microbiological Methods. 151, 76-82 (2018).
  7. Van Lint, P., De Witte, E., Ursi, J. P., Van Herendael, B., Van Schaeren, J. A screening algorithm for diagnosing bacterial gastroenteritis by real-time PCR in combination with guided culture. Diagnostic Microbiology and Infectious Disease. 85 (2), 255-259 (2016).
  8. Liu, J., et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet. 388 (10051), 1291-1301 (2016).
  9. Wang, S. M., et al. Surveillance of shigellosis by real-time PCR suggests underestimation of shigellosis prevalence by culture-based methods in a population of rural China. Journal of Infection. 61 (6), 471-475 (2010).
  10. Wikswo, M. E., Hall, A. J. Outbreaks of acute gastroenteritis transmitted by person-to-person contact–United States, 2009-2010. MMWR Surveillance Summaries. 61 (9), 1-12 (2012).
  11. Shen, H., et al. The 12 Gastrointestinal Pathogens Spectrum of Acute Infectious Diarrhea in a Sentinel Hospital, Shenzhen, China. Frontiers in Microbiology. 7, 1926 (2016).
  12. Tariq, A., et al. Molecular profiling of antimicrobial resistance and integron association of multidrug-resistant clinical isolates of Shigella species from Faisalabad, Pakistan. Canadian Journal of Microbiology. 58 (9), 1047-1054 (2012).
  13. Ferrari, R. G., Panzenhagen, P. H. N., Conte-Junior, C. A. Phenotypic and Genotypic Eligible Methods for Salmonella Typhimurium Source Tracking. Frontiers in Microbiology. 8, 2587 (2017).
  14. Oliver, J. D. The viable but nonculturable state in bacteria. The Journal of Microbiology. 43, 93-100 (2005).
  15. Rintala, A., Munukka, E., Weintraub, A., Ullberg, M., Eerola, E. Evaluation of a multiplex real-time PCR kit Amplidiag(R) Bacterial GE in the detection of bacterial pathogens from stool samples. Journal of Microbiological Methods. 128, 61-65 (2016).
  16. Wohlwend, N., Tiermann, S., Risch, L., Risch, M., Bodmer, T. Evaluation of a Multiplex Real-Time PCR Assay for Detecting Major Bacterial Enteric Pathogens in Fecal Specimens: Intestinal Inflammation and Bacterial Load Are Correlated in Campylobacter Infections. Journal of Clinical Microbiology. 54 (9), 2262-2266 (2016).
  17. Van Lint, P., et al. Evaluation of a real-time multiplex PCR for the simultaneous detection of Campylobacter jejuni, Salmonella spp., Shigella spp./EIEC, and Yersinia enterocolitica in fecal samples. Eur Journal of Clinical Microbiology Infect Dis. 34 (3), 535-542 (2015).
  18. Kamkamidze, G., et al. Rapid Identification Of The Etiological Factors Causing Diarrheal Diseases. Georgian Medical News. (258), 89-92 (2016).
  19. Li, Y. Establishment and Application of a Visual DNA Microarray for the Detection of Food-borne Pathogens. Analytical Sciences. 32 (2), 215-218 (2016).
  20. Zhuang, L., et al. Detection of Salmonella spp. by a loop-mediated isothermal amplification (LAMP) method targeting bcfD gene. Letters in Applied Microbiology. 59 (6), 658-664 (2014).
  21. Shi, X. L., et al. Rapid simultaneous detection of Salmonella and Shigella using modified molecular beacons and real-time PCR. Zhonghua Liu Xing Bing Xue Za Zhi. 27 (12), 1053-1056 (2006).
  22. Mo, Q. H., et al. Preparation of a 96-microwell plate DNA diagnostic chip for detection of foodborne bacteria and its application in an incident of food poisoning. Nan Fang Yi Ke Da Xue Xue Bao. 30 (3), 417-421 (2010).
  23. Wang, H. B., et al. Probe-free and sensitive detection of diarrhea-causing pathogens using RT-PCR combined high resolution melting analysis. Biologicals. 44 (5), 360-366 (2016).
  24. Sun, H., et al. Rapid simultaneous screening of seven clinically important enteric pathogens using a magnetic bead based DNA microarray. World Journal of Microbiology and Biotechnology. 27 (1), 163-169 (2011).
  25. Qi, W., et al. Multiplex PCR assay for rapid detection of five important pathogenic vibrios. Chinese Journal of health laboratory technology. (24), 3497-3500 (2014).
  26. Blanco, G., Diaz de Tuesta, J. A. Culture- and molecular-based detection of swine-adapted Salmonella shed by avian scavengers. Science of the Total Environment. 634, 1513-1518 (2018).
  27. Tang, X. J., Yang, Z., Chen, X. B., Tian, W. F., Tu, C. N., Wang, H. B. Verification and large scale clinical evaluation of a national standard protocol for Salmonella.spp./Shigella.spp. screening using real-time PCR combined with guided culture. Journal of Microbiological Methods. 145, 14-19 (2018).
  28. Dekker, D. M., et al. Drinking water from dug wells in rural ghana–salmonella contamination, environmental factors, and genotypes. International Journal of Environmental Research and Public Health. 12 (4), 3535-3546 (2015).
  29. Gargano, J. W., et al. Mortality from selected diseases that can be transmitted by water – United States, 2003-2009. Journal of Water and Health. 15 (3), 438-450 (2017).
  30. Kumar, R., Surendran, P. K., Thampuran, N. Evaluation of culture, ELISA and PCR assays for the detection of Salmonella in seafood. Letters in Applied Microbiology. 46 (2), 221-226 (2008).
  31. Herrera-Leon, S., et al. Blind comparison of traditional serotyping with three multiplex PCRs for the identification of Salmonella serotypes. Research in Microbiology. 158 (2), 122-127 (2007).
  32. Cunningham, S. A., et al. Three-hour molecular detection of Campylobacter, Salmonella, Yersinia, and Shigella species in feces with accuracy as high as that of culture. Journal of Clinical Microbiology. 48 (8), 2929-2933 (2010).
  33. Eriksson, E., Aspan, A. Comparison of culture, ELISA and PCR techniques for salmonella detection in faecal samples for cattle, pig and poultry. BMC Veterinary Research. 3, 21 (2007).
  34. Dutta, S., et al. Sensitivity and performance characteristics of a direct PCR with stool samples in comparison to conventional techniques for diagnosis of Shigella and enteroinvasive Escherichia coli infection in children with acute diarrhoea in Calcutta, India. Journal of Medical Microbiology. 50 (8), 667-674 (2001).

Play Video

Cite This Article
Yang, Z., Chen, X., Tu, C., Su, Y., Wang, H. A High-throughput Platform for the Screening of Salmonella spp./Shigella spp.. J. Vis. Exp. (141), e58200, doi:10.3791/58200 (2018).

View Video