Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Immunology and Infection

体外ELISA测试评估狂犬病疫苗效力

Published: May 11, 2020 doi: 10.3791/59641

Summary

在这里,我们描述了一个间接的ELISA三明治免疫捕获,以确定狂犬病疫苗中的免疫原性糖蛋白含量。本测试使用中和单克隆抗体(mAb-D1)识别糖蛋白修剪器。它是体内NIH测试的替代方案,用于在生产过程中遵循疫苗效力的一致性。

Abstract

全球对动物福利的日益关注鼓励制造商和国家控制实验室 (OMCL) 遵循实验室动物检测的替换、减少和改进的 3R 战略。建议在世卫组织和欧洲各级制定体外方法,作为NIH检测的替代品,以评估狂犬病疫苗的效力。在狂犬病病毒 (RABV) 颗粒的表面,糖蛋白的修剪器构成诱导病毒中和抗体 (VNAbs) 的主要免疫原。ELISA测试,其中中和单克隆抗体(mAb-D1)识别糖蛋白的三氯体形式,已经开发,以确定原生折叠三氯糖蛋白的内容以及疫苗批次的生产。这种体外效力测试与NIH测试良好一致,并发现适合RABV疫苗制造商和OMCL的合作试验。在不久的将来,避免使用动物是一个可以实现的目标。

所介绍的方法基于使用mAb-D1的间接ELISA三明治免疫捕获,该mAb-D1可识别三角RABV糖蛋白的抗原位点III(aa 330至338),即免疫原性RABV抗原。mAb-D1 用于疫苗批次中糖蛋白修剪器的涂层和检测。由于表位因其构象特性而得到识别,因此 mAb-D1 无法捕获和检测潜在的变性糖蛋白(免疫原性较低)。要测试的疫苗在mAb-D1的培养板中孵育。结合三聚三叶胶质的拉巴糖蛋白通过再次添加mAb-D1来识别,用过氧化物酶标记,然后在基质和色蛋白的存在下显示。对经测试的疫苗和参考疫苗的吸收度进行比较,可以确定免疫原糖蛋白含量。

Introduction

50多年来,NIH测试1被用作一种黄金标准方法,在批次发布前评估狂犬病疫苗的功效。该测试包括对带有疫苗的小鼠组进行腹内免疫,然后14天后与狂犬病病毒挑战病毒标准(CVS)菌株(RABV)进行脑内(IC)挑战。从在IC挑战中幸存下来的小鼠比例来评估效力。虽然世卫组织2和欧洲药典3仍然需要NIH测试来评估疫苗的功效,但该测试面临几个障碍:结果高度可变4;传染性RABV在挑战期间使用,这既需要技术技能和严格的生物安全措施;大量动物被使用,挑战的严重性引起了严重的伦理问题这种测试的一个不太严重的变异已经形成:在腹管内免疫两周后,小鼠不受IC的挑战,而是通过体外中和测试,在血清中存在特定的RABV中和抗体(VNAbs)进行流血和测试。然而,这项试验仍然需要牺牲大量的实验鼠,虽然它已经用于兽医疫苗66,7,7并已考虑为人类疫苗8。.

截至目前,国际9国和欧洲10项建议都鼓励制造商和国家控制实验室(官方药物控制实验室 -OMCL)实施实验室动物检测的更换、减少和改进,即3R战略。欧洲第2010/63/EU号指令(自2013/01/01月起生效)也加强了对疫苗制造商和实验室参与狂犬病疫苗质量控制以及狂犬病研究的限制。因此,开发、验证和使用替代体外方法现已成为优先事项。这些不仅在道德上是健全的,而且还可以减少批次测试成本,并将结果的时间缩短到数小时,而不是第3周。

在RABV粒子的表面,糖蛋白采用12、13、14、15、1613,14,15,16的三角状。12在狂犬病疫苗中,这种原生三分体构成诱导VNAbs17的主要免疫原,而单体、可溶性或变性糖蛋白的免疫原性差18、19。,19因此,沿疫苗生产过程中保存糖蛋白的修剪器是保存最佳免疫原性潜力的良好指标。几种免疫化学方法,如抗体结合测试20、21、,21单径向免疫扩散(SRD)测试22和ELISA测试23、24、25、26、27,均被世卫组织技术报告系列23,24,25,26,272和欧洲专著3推荐,以量化狂犬病疫苗中的抗原含量。制造商使用这些来监测疫苗生产的一致性,并由OMCL评估人类疫苗的批次28的一致性配方即使NIH测试仍考虑其效力。

然而,所有这些免疫化学方法并不等效。SRD测试需要预先处理,可能会改变膜锚定修剪器,并导致糖蛋白22,29,29的可溶性或变性形式。因此,SRD在区分免疫原性和非免疫原性糖蛋白方面效率不高,导致对疫苗批次的免疫原性评价不完善。相比之下,ELISA测试更敏感22,保留了糖蛋白的原生结构,更适合确定糖蛋白的原生折叠修剪器的含量。ELISA 测试可以使用兔子多克隆或小鼠单克隆抗糖蛋白抗体纯化和浓缩与硫酸铵。研究表明,NIH测试与ELISA在疫苗中评估的抗原含量良好一致,并得出结论,ELISA方法适用于体外效力测试。这主张ELISA测试至少可以补充甚至取代NIH测试44,26,27,30,31,32,33。,26,27,30,31,32,33今天,欧洲药典建议使用经过验证的血清学或免疫化学测定作为NIH测试3的替代品。完全避免动物使用疫苗效力已成为一个现实的观点。

下面介绍的方法是基于一个间接的ELISA三明治免疫捕获使用小鼠单克隆抗体克隆(mAb-D1),识别的抗原位点III(a330至338)的三角RABV糖蛋白15,34。15,该方法最初是在巴斯德研究所26、30,30中开发,然后由国家国家麻醉研究所(ANSM)实验室(即法国OMCL4,4,33)进行优化验证。mAb-D1 既用于使板敏感,又用于检测捕获的抗原。这允许对糖蛋白修剪器进行特定定量,即免疫原性RABV抗原。用于检测的 mAb-D1 标有过氧化物酶,在基材和色蛋白存在时会显示此特性。对经测试的疫苗和参考疫苗的吸收度进行比较,可以确定免疫原糖蛋白含量。值得注意的是,同一类型的测定可以适用于不同的mAbs识别不同的抗原位点的RABV糖蛋白35。与硫酸铵抗糖蛋白多克隆兔免疫球蛋白G(IgG)或单克隆小鼠球蛋白一起获得和纯化或浓缩的方法,在36之前与过氧化物酶37结合抗体的方法中得到了广泛的描述

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 安全防范措施

注:此方法适用于活式 RABV 和灭活疫苗。

  1. 使用良好的实验室实践和安全程序。
  2. 佩戴足够的个人防护设备 (PPE),包括一次性外套、手套、面罩、眼镜等。
  3. 当活病毒被定化时,使用II类生物安全柜。
    1. 将任何与样品接触的材料(试剂、洗涤溶液等)视为传染性材料。
    2. 通过浸入漂白液(次氯酸钠的2.5%)进行30分钟的净化,处理受污染的材料。
  4. 按照良好的实验室实践处理化学品。

2. 准备

  1. 尽可能使用分析级试剂。
  2. 制备涂层缓冲液/碳酸盐缓冲液、钝化缓冲液、稀释剂和碳酸液(表1)的新溶液,通过0.45或0.22μm过滤器制备滤清器,并在使用前一天储存在4°C下,以保持其分析纯度。
  3. 允许试剂在使用前 30 分钟达到室温(+18 °C 至 +25 °C),并在使用前通过温和混合进行均质化。

3. 微板敏化

注:使用96孔吸附免疫测定板,经过优化,以结合大量的免疫球蛋白(例如,见材料表)。

  1. 在每个井中,加入200μL的单克隆抗体(mAb-D1)稀释在碳酸盐缓冲液中。
    注:已实验确定约1μg/mL的最佳浓度,并对应于纯化mAb-D1的约1/2000稀释。每个 mAb-D1 批次均指示此建议浓度,并且必须通过正控制定期验证。
  2. 用粘合膜盖住板,在加湿的温度下在37°C下孵育micro板3小时。
  3. 小心吸气,并将井内含量转移到含有2.5%次氯酸钠溶液的受体中。
  4. 反转微板,让它在室温下在吸附纸上干燥 5 分钟。

4. 微板钝化

  1. 到每个井中,添加300μL的钝化缓冲液。
  2. 用胶膜盖住板,在37°C下孵育30分钟。
  3. 小心吸气,并将井内含量转移到含有2.5%次氯酸钠溶液的受体中。
  4. 反转微板,让它在室温下在吸附纸上干燥 1 分钟。
    注:微孔板可立即使用或密封在-20°C,长达3个月,直到使用。

5. ELISA测定

注:为建立参考疫苗的控制曲线,不需要步骤5.3;对经测试的疫苗进行去点,所有步骤5.1到5.6是必要的。

  1. 敏感微板的洗涤
    1. 到每口井,加入300μL的洗涤缓冲液。
    2. 小心吸气,并将井内含量转移到含有2.5%次氯酸钠溶液的受体中。
    3. 重复步骤 5.1.1 和 5.1.2 五次,以广泛清洗敏感板。
    4. 反转微板,让它在室温下在吸附纸上干燥 1 分钟。
  2. 控制曲线参考疫苗的稀释
    1. 在1 mL蒸馏水中重新形成参考疫苗(验证抗原09),对应狂犬病病毒糖蛋白浓度10μg/mL。
    2. 在稀释剂中制备10倍稀释重建的参考疫苗,达到1微克/m升的狂犬病病毒糖蛋白。
    3. 制备6个连续双倍稀释这种参考疫苗在稀释剂中,如表1所示。
    4. 在重复(井 1H/2H)中分配 200 μL 稀释剂,作为空白控制。
    5. 每口疫苗稀释剂中每口200μL(井G1/G2至A1/A2)。
  3. 经测试的疫苗滴定
    1. 准备稀释稀释稀释剂中测试的疫苗的十倍。
    2. 制备7剂二重序列稀释试验疫苗的稀释剂,如表2所示。
    3. 每口试验疫苗稀释剂中每口200μL(水井H3/H4至A3/A4)。
  4. ELISA板的孵化/洗涤
    1. 用粘合膜盖住微板,在37°C下孵育1小时。
    2. 取出薄膜,小心吸气,并将每个井的内容转移到含有2,5%次氯酸钠溶液的受体中。
    3. 到每口井中加入300μL的洗涤缓冲液。
    4. 小心吸气,并将每个井的含量转移到含有2.5%次氯酸钠溶液的受体中。
    5. 重复步骤 5.4.3 和 5.4.4 五次去除未结合的抗原,并保存与涂层抗体 (mAb D1) 结合的 G 蛋白修剪器。
    6. 反转微板,让它在室温下在吸附纸上干燥 1 分钟。
  5. 过氧化物酶结合 mAb-D1 的绑定
    1. 每口分配200 μL,建议稀释(1/2000)标有mAb-D1的稀释剂(约浓度为1μg/mL)。指示每个 mAb-D1 批次的建议浓度,并且必须定期通过正控制进行验证。
    2. 用粘合膜盖住微板,在37°C下孵育1小时。
    3. 取出薄膜,小心吸气,并将每个井的内容转移到含有2,5%次氯酸钠溶液的受体中。
    4. 添加到每个井,300 μL的洗涤缓冲液。
    5. 小心吸气,并将每个井的含量转移到含有2.5%次氯酸钠溶液的受体中。
    6. 重复步骤 5.5.4 和 5.5.5 五次,去除未绑定过氧化物酶标记的抗体 (mAb D1)。
    7. 反转微板,让它在室温下在吸附纸上干燥 1 分钟。
  6. 使用基质-色谱的启示
    1. 每口基底-色谱溶液中分配200μL。
    2. 用薄膜密封微板,在室温下在黑暗中孵育30分钟。黄橙色形成其强度与绑定过氧化物酶标记抗体(mAb D1)的量成正比。
    3. 通过每口井添加 50 μL 停止溶液来阻止反应。
    4. 小心地擦拭微板的底部,并将其放入分光光度计中,以确定所有已使用孔中的 492 nm 处的光学密度 (OD): 负控制(空白)、参考疫苗和经过测试的疫苗。
    5. 将 OD 数据收集为 .xls 或 .xlsx 文件格式进行分析。
  7. 绘制参考疫苗曲线,将三角糖蛋白含量作为光学密度(492 nm)的函数
    1. 在参考疫苗的不同稀释下计算每种重复的均OD在492nm(表2中的井G1/G2到A1/A2)
    2. 从每个计算的平均 OD 中减去空白的平均 OD(表 2中的井 H1/H2)。
    3. 在垂直轴(线性比例)上绘制生成的 OD 值,并在水平轴上绘制糖蛋白修剪器 (ng/mL) 中的相应浓度(对数刻度)。
    4. 通过连接点绘制参考曲线(图 1)。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

在下面的示例中,使用了参考疫苗09,包括纯化灭活狂犬病病毒颗粒(PV疫苗毒株)。在测定病毒蛋白总量(BCA测试)和通过SDS-聚丙烯酰胺凝胶电泳评估糖蛋白百分比后,确定了其中的糖蛋白修剪器(10 μg/mL)含量。或者,可以使用经过校准的参考疫苗,例如,世卫组织第六狂犬病疫苗国际标准(NIBSC代码:07/162)。

表 3显示了典型实验的 OD 值 (492 nm)。使用这些值,参考疫苗曲线绘制时绘制了(1)在垂直轴上参考疫苗的不同稀释处绘制(1)均值OD(减去空白的平均OD);在垂直轴上绘制参考疫苗的均值OD(减去空白的平均OD)。(2)水平轴上糖蛋白修剪器(ng/mL)的浓度(对数刻度)(图1)。

与该参考疫苗曲线相比,估计了所试验疫苗的糖蛋白含量。评价对于在参考疫苗曲线的线性部分给出平均OD值的试验型疫苗的稀释是精确的。在所示实验中(图1),线性部分约为 1 到 2 OD (表 3)。

经测试的疫苗稀释1/40,重复样品的平均OD为1.534,因此适用于进一步评估。当此 OD 水平绘制到与参考疫苗曲线的交点时,x 轴上的垂直投影对应于糖蛋白的 500 纳克/mL。考虑到稀释,测试的疫苗包含

40 x 500 纳克/mL = 20 μg/mL 的三聚糖蛋白。

目前,没有ELISA国际单位的RABV糖蛋白含量。然而,参照疫苗的体内效力,在国际单位(IU/mL),已建立使用NIH测试相比,第6届世卫组织国际标准(NIBSC代码:07/162)4。4因此,在参考疫苗和经测试的疫苗之间比较平均OD不仅能够测量被测试疫苗的三叶糖蛋白含量,而且还可以评估同等国际单元(EIU/mL)中估计的体外效力。

使用此处描述的ELISA方法,法国OMCL(ANSM)监测了1000多批人类狂犬病疫苗的糖蛋白含量,并对照在制造商现场4进行的NIH测试。NIH测试的高变异性,由于小鼠应变的异质性和挑战程序38,, 阻止了两个测试之间的统计相关性。然而,使用体外和体内测定4,结果的轮廓和相同的通过/失败结论得到一致性。这一致性证实,由mAb-D134、39,39识别的糖蛋白的原生修剪剂构成在接种17期间诱导VNAbs的主要狂犬病病毒免疫原。这些VNAbs能够保护小鼠免受NIH测试的脑内挑战。总之,对狂犬病糖蛋白含量的体外评价是NIH测试评估狂犬病疫苗效力的一种有吸引力的替代方案。

缓冲器和试剂 制备
涂层缓冲器
(碳酸盐缓冲器 50mM pH=9.6)
将碳酸钠 50 mM(Na2CO3-10H2O)添加到碳酸氢钠 50 mM(NaHCO3),直到所需的 pH(碳酸氢钠约 1/10 体积)
钝化缓冲区 0.3% 牛血清白蛋白 (BSA, 分数 V), 碳酸盐缓冲液 50 mM pH 9.6 的 5% 蔗糖
10 倍磷酸盐缓冲盐水 pH=7 (PBS 10x) NaCl 80 g, KCl 2 g, Na2PO4-12H2O 11.33 g, KH2PO4 2g 在 1L 蒸馏水.使用 4N NaOH 调整 pH=7
洗涤缓冲器 0.05% 在 1x PBS 中补间
稀释 剂                                                  0.5% 牛血清白蛋白 (分数 V), 0.05% Tween 在 1x PBS (调整 pH 到 7,因为酸化 BSA)
酸液缓冲器 pH-5.6
(用于过氧化物酶基材)
11.67 g 三钠柠檬酸-2H2O (Na3C6H5O7-2H 20),2.17 g 柠檬酸-1H20 在 1L 蒸馏水中
基底-色原溶液 50毫克正成苯胺片剂,0.1% 过氧化氢 30%(110 伏)在 25 毫升酸化缓冲液 pH 5.6
停止解决方案
(4N 硫酸)
10 毫升 H2SO4 36N 在 80 毫升冷却蒸馏水中。稀释必须在冰浴中进行

表1.在测定中使用的缓冲区。

1 2 3 4 5 6 7 8 9 10 11 12
A 参考疫苗 1/640 参考疫苗 1/640 测试疫苗 1/1280 测试疫苗 1/1280
B 参考疫苗 1/320 参考疫苗 1/320 测试疫苗 1/640 测试疫苗 1/640
C 参考疫苗 1/160 参考疫苗 1/160 测试疫苗 1/320 测试疫苗 1/320
D 参考疫苗 1/10 参考疫苗 1/10 测试疫苗 1/160 测试疫苗 1/160
E 参考疫苗 1/40 参考疫苗 1/40 测试疫苗 1/80 测试疫苗 1/80
F 参考疫苗 1/20 参考疫苗 1/20 测试疫苗 1/40 测试疫苗 1/40
G 参考疫苗 1/10 参考疫苗 1/10 测试疫苗 1/20 测试疫苗 1/20
H 空白 空白 测试疫苗 1/10 测试疫苗 1/10
参考疫苗 09 号稀释 浓度(ng/mL)
1/640 15.625
1/320 31.25
1/160 62.5
1/80 125
1/40 250
1/20 500
1/10 1000

表2:狂犬病糖蛋白滴定测定和稀释的微板计划,供参考和测试用于测定的疫苗。

参考疫苗 09 号稀释 浓度(ng/mL) 经测试的疫苗稀释 OD 列 1 OD 列 2 OD 均值 参考 OD 均值 - 空白 OD 均值
1/640 15.625 1/1280 0.17 0.16 0.165 0.0825
1/320 31.25 1/640 0.233 0.238 0.2355 0.153
1/160 62.5 1/320 0.378 0.387 0.3825 0.3
1/80 125 1/160 0.619 0.644 0.6315 0.549
1/40 250 1/80 1.006 1.077 1.0415 0.959
1/20 500 1/40 1.559 1.674 1.6165 1.534
1/10 1000 1/20 2.245 2.307 2.276 2.1935
空白 空白 1/10 0.078 0.087 0.0825

表3.在 OD492 nm 上获得的结果,用于绘制参考曲线

Figure 1
1:参考曲线,显示三角糖蛋白含量作为参考疫苗的光密度(492 nm)功能。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

mAb-D1识别的表位位于RABV糖蛋白的抗原部位III,它不仅是VNAbs诱导的免疫主导物,而且还涉及神经毒性、致病性40、41,41和受体识别42。沿糖蛋白的另一个重要的抗原位点,站点II43,有几个MAbs已被隔离,如mAb-WI-111235。这些也可用于类似类型的实验。

ELISA的这种体外方法的一个局限性在于对要检测的狂犬病病毒株上所使用的mAb所识别的表位进行必要的保护。到目前为止,用于人类狂犬病疫苗的所有经典菌株都由mAb-D1识别。动物疫苗中使用的狂犬病菌株的多样性可能在未来构成一个问题。然而,如前所述,相同的测定可以应用使用不同的mAbs识别RABV糖蛋白的不同抗原位点进行涂层和检测。这将允许规避问题35。

该方法的另一个敏感点,量化RABV糖蛋白的三角形式,是pH和温度对可逆构象转换14的可能影响。这些参数在拟议的协议中被考虑在内。

总之,通过体外ELISA方法对正确折叠的糖蛋白修剪器的高度免疫原性表皮的定量,似乎与NIH测试一样有效,以测量疫苗批次诱导抗狂犬病病毒感染的体液免疫能力。此外,ELISA方法可以区分亚能疫苗批次,在质量或数量上,从强效的4,4,35。在提出这种体外ELISA检测以取代NIH测试之前,最后一步是组织一项国际合作研究,以改进和标准化。

《替代方法验证机构间协调委员会》(ICCVAM)题为"减少、提炼和取代在)疫苗效力和安全测试中使用动物的替代方法国际讲习班"(Ames,2010年9月)44日,得出的结论是,NIH试验应代之以评估疫苗免疫原性的替代体外测试,并能够区分强效和次强4。2012年,欧洲动物试验替代伙伴关系(EPAA)的另一个讲习班45决定,根据现行国际狂犬病参考标准校准的标准化三明治ELISA将是狂犬病疫苗效力检测的理想替代品。随后,一项包括制造商和监管机构在内的国际合作预验证研究,比较了制造商及其国家控制实验室用于批量发布的各种 ELISA 设计,以便从不同疫苗品牌35中区分强效批次。欧洲药品和保健质量局(EDQM)提出了将mAb-D1(抗原站点III)和不同的mAb-WI-1112(抗原站点II)相结合的ELISA设计,以在生物标准化方案(BSP)的框架下进行一项即将开展的国际合作研究。这表明 (1) 用于微板涂层和检测的 mAbs 几种组合可用作体内 NIH 测试的体外替代品,以及 (2) 这些组合可以依赖于要测试的 RABV 疫苗菌株。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有什么可透露的。

Acknowledgments

必须承认西尔维·莫尔格博士和让-米歇尔·查萨尔博士的主要参与,以建立疫苗批次的ELISA测定赛,并组织国际讲习班和合作研究。我们感谢萨布丽娜·卡利对手稿的批判性解读。皮埃尔·佩林博士负责mAb-D1的隔离和表征。这项工作主要由巴斯德研究所资助。

Materials

Name Company Catalog Number Comments
Class II Biological Safety Cabinet ThermoFisher Scientific 10445753 if titrating live virus
Clear Flat-Bottom Immuno Nonsterile 96-Well Plates, 400 µL, MAXISORP ThermoFisher Scientific 439454 good for binding to the loaded antibody
Equip Labo Polypropylene Laboratory Fume Hood ThermoFisher Scientific 12576606 for the preparation of sulfuric acid
Immunology Plate Strong
Adsorption MAXISORP Flat Bottom
Well F96
Dutscher 55303 good for binding to the loaded antibody
Microplate Sealing Tape(100 sheets) ThermoFisher Scientific 15036
Microplate  single mode reader Sunrise TECAN
Microplate shaker-incubator Dutscher 441504
Microplate washer Wellwash ThermoFisher Scientific 5165000
Multichannel pipette (30-300 µL) 12 channels ThermoFisher Scientific 4661180N
Single Channel pipettes (Kit 2 : Finnpipettes F2 0.2-2 μL micro, 2-20 μL, 20-200 μL & 100-1000 μL) ThermoFisher Scientific 4700880

DOWNLOAD MATERIALS LIST

References

  1. Seligmann, E. B. The NIH test for potency. Laboratory Techniques in Rabies. , 3rd Edition, WHO Geneva. 279-286 (1973).
  2. Annex 2. Recommendations for inactivated rabies vaccine for human use produced in cell substrates and embryonated eggs. WHO Technical Report Series. 941, WHO Geneva. 83-132 (2007).
  3. Rabies vaccine for human use prepared in cell cultures. European Pharmacopoeia. , (2008).
  4. Gibert, R., Alberti, M., Poirier, B., Jallet, C., Tordo, N., Morgeaux, S. A relevant in vitro ELISA test in alternative to the in vivo NIH test for human rabies vaccine batch release. Vaccine. 31, 6022-6029 (2013).
  5. Stokes, W., et al. Report on the international workshop on alternative methods for human and veterinary rabies vaccine testing: state of the science and planning the way forward. Biologicals. 40 (5), 369-381 (2012).
  6. Krämer, B., Bruckner, L., Daas, A., Milne, C. Collaborative study for validation of a serological potency assay for rabies vaccine (inactivated) for veterinary use. Pharmeuropa Bio & Scientific Notes. 2, 37-55 (2010).
  7. Krämer, B., Kamphuis, E., Hanschmann, K. M., Milne, C., Daas, A., Duchow, K. A multi-dose serological assay suitable to quantify the potency of inactivated rabies vaccines for veterinary use. Biologicals. 41, 400-406 (2013).
  8. Fitzgerald, E. A., Gallagher, M., Hunter, W. S., Seligmann, E. B. Jr Use of the antibody assay in immunized mice for the determination of rabies vaccine potency. Developments in Biological Standardization. 40, 183-186 (1978).
  9. Brown, F., Cussler, K., Hendriksen, C. WHO activities towards the three Rs in the development and control of biological products. Replacement, reduction and refinement of animal experiments in the development and control of biological products. , Karger. 31-39 (1996).
  10. Behr-Gross, M. E., Spieser, J. M. Contributions of the European OMCL Network and Biological Standardisation Programme to animal Welfare. ALTEX-Alternatives to Animal Experimentation. 23, 21-28 (2006).
  11. Directive 2010/63/EU of the European Parliament and the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of European Union. L276, 33-79 (2010).
  12. Whitt, M. A., Buonocore, L., Prehaud, C., Rose, J. K. Membrane fusion activity, oligomerization and assembly of the rabies virus glycoprotein. Virology. 185 (2), 681-688 (1991).
  13. Gaudin, Y., Ruigrok, R. W., Tuffereau, C., Knossow, M., Flamand, A. Rabies virus glycoprotein is a trimer. Virology. 187, 627-632 (1992).
  14. Roche, S., Gaudin, Y. Characterization of the equilibrium between the native and fusion-inactive conformation of rabies virus glycoprotein indicates that the fusion complex is made of several trimers. Virology. 297 (1), 128-135 (2002).
  15. Desmézières, E., Maillard, A. P., Gaudin, Y., Tordo, N., Perrin, P. Differential stability and fusion activity of Lyssavirus glycoprotein trimers. Virus Research. 91 (2), 181-187 (2003).
  16. Koraka, P., et al. A recombinant rabies vaccine expressing the trimeric form of the glycoprotein confers enhanced immunogenicity and protection in outbred mice. Vaccine. 32 (36), 4644-4650 (2014).
  17. Wiktor, T., Gyorgy, E., Schlumberger, D., Sokol, F., Koprowski, H. Antigenic properties of rabies virus components. Journal of Immunology. 110, 269-276 (1973).
  18. Gamoh, K., Senda, M., Itoh, O., Muramatsu, M., Hirayama, N., Koike, R., et al. Use of ELISA for in vitro potency test of rabies vaccines for animal use. Biologicals. 24, 95-101 (1996).
  19. Dietzschold, B., Wiktor, T., Wunner, W., Varrichio, A. Chemical and immunological analysis of the rabies soluble glycoprotein. Virology. 124, 330-337 (1983).
  20. Fitzgerald, E., Green, O., Seligmann, E. Rabies vaccine potency testing: a comparison between the antibody-binding test and the NIH test. Symposia Series in Immunobiological Standard. 21, 300-307 (1974).
  21. Barth, R., Groβ-Albenhausen, E., Jaeger, O., Milcke, L. The antibody-binding test, a useful method for quantitative determination of inactivated rabies virus antigen. Journal of Biological Standardization. 9, 81-89 (1981).
  22. Ferguson, M., Schild, G. A single-radial-immunodiffusion technique for the assay of rabies glycoprotein antigen: application for the potency tests of vaccines against rabies. Journal of General Virology. 59, 197-201 (1982).
  23. Atanasiu, P., Perrin, P., Delagneau, J. F. Use of an enzyme immunoassay with protein A for rabies antigen and antibody determination. Developments in Biological Standardization. 46, 207-215 (1980).
  24. van der Marel, P., van Wezel, A. Quantitative determination of rabies antigen by ELISA. Developments in Biological Standardization. 50, 267-275 (1981).
  25. Adamovicz, P., Aguillon, F., David, A., Le Fur, R., Mazert, M. C., Perrin, P., et al. The use of various immunochemical, biochemical and biological methods for the analysis of rabies virus production in tissue cultures. Developments in Biological Standardization. 55, 191-197 (1984).
  26. Lafon, M., Perrin, P., Versmisse, P., Sureau, P. Use of monoclonal antibody for quantification of rabies vaccine glycoprotein by enzyme immunoassay. Journal of Biological Standardization. 13, 295-301 (1985).
  27. Thraenhart, O., Ramakrishnan, K. Standardization of an enzyme immunoassay for the in vitro potency assay of inactivated tissue culture rabies vaccines: determination of the rabies virus glycoprotein with polyclonal antisera. Journal of Biological Standardization. 17, 291-309 (1989).
  28. Council of Europe. Official Authority Batch release of Rabies vaccines Guideline. , PA/PH/OMCL (11) 173 DEF (2019).
  29. Ferguson, M., Seagroatt, V., Schild, G. A collaborative study on the use of single radial immunodiffusion for the assay of rabies virus glycoprotein. Developments in Biological Standards. 12, 283-294 (1984).
  30. Perrin, P., Morgeaux, S., Sureau, P. In vitro rabies vaccine potency appraisal by ELISA: advantages of the immunocapture method with a neutralizing anti-glycoprotein monoclonal antibody. Biologicals. 18, 321-330 (1990).
  31. Rooijakkers, E. J., Uittenbogaard, J. P., Groen, J., Osterhaus, A. D. Rabies vaccine potency control: comparison of ELISA systems for antigenicity testing. Journal of Virological Methods. 58, 111-119 (1996).
  32. Rooijakkers, E. J., Uittenbogaard, J. P., Groen, J., van Herwijnen, J., Osterhaus, A. D. Development and evaluation of alternative testing methods for the in vivo NIH potency test used for the quality control of inactivated rabies vaccines. Brown, F., Cussler, K., Hendriksen, C. , Karger. 137-145 (1996).
  33. Fournier-Caruana, J., et al. Inactivated rabies vaccine control and release: use of an ELISA method. Biologicals. 31, 9-16 (2003).
  34. Sissoëff, L., Mousli, M., England, P., Tuffereau, C. Stable trimerization of recombinant rabies virus glycoprotein ectodomain is required for interaction with the p75NTR receptor. Journal of General Virology. 86, 2543-2552 (2005).
  35. Morgeaux, S., et al. Replacement of in vivo human rabies vaccine potency testing by in vitro glycoprotein quantification using ELISA - Results of an international collaborative study. Vaccine. 35 (6), 966-971 (2017).
  36. Lafon, M. Techniques for the production, screening and characterisation of monoclonal antibodies. Laboratory techniques in rabies, 4th Edition. Meslin, F. X., Kaplan, M. N., Kopowski, H. , WHO. Geneva. 133-144 (1996).
  37. Perrin, P. Techniques for the preparation of rabies confugates. Laboratory techniques in rabies, 4th Edition. Meslin, F. X., Kaplan, M. N., Kopowski, H. , WHO. Geneva. 433-444 (1996).
  38. Barth, R., Diderrich, G., Weinmann, E. NIH test, a problematic method for testing potency of inactivated rabies vaccine. Vaccine. 6, 369-377 (1988).
  39. Jallet, C., et al. Chimeric lyssavirus glycoproteins with increased immunological potential. Journal of Virology. 73, 225-233 (1999).
  40. Dietzschold, B., et al. Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proceedings of the National Academy of Science U.S.A. 80, 70-74 (1983).
  41. Seif, L., Coulon, P., Rollin, P., Flamand, A. Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. Journal of Virology. 53, 926-934 (1985).
  42. Lafon, M. Rabies virus receptors. Journal of Neurovirology. 11, 82-87 (2005).
  43. Benmansour, A., Leblois, H., Coulon, P., Tuffereau, C., Gaudin, Y., Flamand, Y., Lafay, A. Antigenicity of the rabies virus glycoprotein. Journal of Virology. 65, 4198-4203 (1991).
  44. Rabies Vaccine Workshop Summary. , http://ntp.niehs.nih.gov/iccvam/meetings/rabiesvaccwksp-2011/rabiesvaccinewkspsumm-30nov11.pdf (2011).
  45. De Mattia, F., et al. The Vaccines Consistency Approach Project: an EPAA initiative. Pharmeuropa Bio & Scientific Notes. 2015, 30-56 (2015).

Tags

免疫学和感染,第159期,狂犬病疫苗效力,NIH测试,ELISA方法,mAb-D1单克隆抗体,糖蛋白修剪器,糖蛋白含量
体外ELISA测试评估狂犬病疫苗效力
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Jallet, C., Tordo, N. In Vitro ELISA More

Jallet, C., Tordo, N. In Vitro ELISA Test to Evaluate Rabies Vaccine Potency. J. Vis. Exp. (159), e59641, doi:10.3791/59641 (2020).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter