Summary

游泳运动员心肺评估的快速递增的绑带游泳最大协议

Published: January 28, 2020
doi:

Summary

与自由泳期间的测量(这会带来固有的挑战和局限性)不同,使用更可行、更易于管理系绳游泳的游泳者,可以确定游泳者心肺功能的重要参数。通过气体交换和通风数据收集快速增加的协议。

Abstract

增量运动测试是评估耐力运动员心肺能力的标准手段。虽然最大耗氧率通常用作这方面的标准测量,但从功能角度来看,两个代谢断点反映了乳酸盐生产/消耗动态的变化,因为工作速度的提高可能更适用于耐力运动员。运动经济性是衡量耐力运动员评价的一个重要参数,它代表了副极限工作表现的耗氧率。斜坡增量测试包括逐步但快速提高工作速度,直到达到运动容差的极限,对于确定这些参数非常有用。这种类型的测试通常在循环测速仪或跑步机上进行,因为在工作速率递增方面需要精度。但是,运动员在进行运动所需的锻炼模式时,应进行测试。因此,游泳者通常在自由泳增量测试中进行评估,而这种精度很难达到。我们最近建议,固定游泳对逐渐增加的负载(增量系绳游泳)可以作为一个”游泳测速计”,允许足够的精度,以适应一个渐进的,但快速的加载模式,揭示上述代谢断点和运动经济。然而,在这种协议期间达到的耗氧峰值速率与自由游泳期间测量的最大速率近似的程度仍有待确定。在本文中,我们将解释如何利用这种快速增加的系绳游泳方案来评估游泳者的心肺能力。具体来说,我们解释如何使用此协议对短距离竞技游泳者的评估显示,他的吸氧率分别为30.3 mL和34.8mL=min-1=kg-1 BM,在他的气体交换阈值和呼吸补偿点。

Introduction

当运动保持在恒定的工作速度(CWR)时,根据WR下降4,5的”运动强度域”,生理反应概况明显不同。具体来说,实现V_O2和血液[乳酸]”稳定状态”是快速在中度域,延迟在重域和无法实现在严重域4,5。众所周知,在INC(V[O2GET)期间,O2在GET的消耗率是CWR3、6期间将中度与重域分开的代谢率。虽然存在争议,但最近的一些观察表明,在RCP(V-O2RCP),O2的消耗速率与重/重分离7、8、9、10之间的等值相似。因此,从INC期间收集的数据中识别VO2GET和V+O2RCP,对于通过代谢率为耐力运动员开一个特定领域的训练方案可能很有用,并告诫说,根据增量测试8、11中产生的VO+2工作速率关系,将代谢率与特定工作速率对齐比简单地调整代谢率更为复杂。

当确定V&O2max的测试概念被初步探索时,研究人员让受试者在单独的第1天以越来越快的速度进行轨道跑步,达到运动耐受极限(Tlim)。研究随后证实,V*O2max也可以确定从类似的回合执行到Tlim在同一天与休息时间穿插12。最终,结果显示,具有WR的连续协议在特定时间间隔(例如,每3分钟)以增量方式增加,显示与不连续测试13相同的V+O2峰值。因此,这些”分级运动测试”成为确定心肺健康标准的标准。然而,在1981年,Whipp和他的同事发表了一项研究表明,为了V&O2max测量的目的,INC也可以完全在非稳定状态下进行;也就是说,随着WR的不断增加,作为一个”平滑的时间函数”(RAMP-INC)14 。与具有扩展阶段和每个阶段相对较大的 WR 增加的 INC 不同,在 RAMP-INC 期间逐渐增加可确保将 GET 和 RCP 分开的”等值缓冲区域”将明确定义15。此外,与具有分阶段的INC类似,RAMP-INC可用于评估”运动经济性”(即,每个给定WR所需的V•O2);然而,与具有阶段的 INC 不同,在这种情况下, 用于此目的的”三角洲效率”(即 V[O2-WR 关系的斜率)的反面11,考虑到由于 VO2对强度频谱工作速率的响应的复杂性,此参数本身不是 INC 的不可变特征(例如,从不同的基线工作速率启动的 RAMP-INC 或以不同斜坡斜率为特征)16.

对于一般体能测试,INC 通常在腿部测速仪或跑步机上进行,因为这些模式更可用,而腿部骑自行车和步行/跑步为普通人所熟悉。此外,管理RAMP-INC需要以较小的增量(例如,每2个s1W)持续增加WR的能力;因此,测速仪(通常为腿部循环)最适合此类测试。然而,运动员评估是更复杂的,因为运动员必须进行测试,同时执行其运动所需的特定运动模式。对于参加涉及跑步的运动的自行车运动员和个人来说,这没有问题,因为上述测试机器的可访问性和适用性。相反,在评估水生运动员时,通过气体交换和通风数据收集以及 RAMP-INC 所需的逐步 WR 递增进行生态有效的测试更具挑战性。

在自动收集系统出现之前,游泳者经常在进行最大游泳17次后使用道格拉斯袋收集进行气体交换评估。一旦自动化系统被开发出来,”实时”收集就发生了,但不是在”真实游泳”条件下(例如,游泳者在控制WR的烟道中游泳)17。不幸的是,前者由于”向后外推”的假设而具有固有的局限性,而后者则引起人们对泳泳改变技术17程度的担忧。目前的技术是使用便携式呼吸式收集系统,在自由泳17期间与游泳者在游泳池旁边移动。虽然这种类型的测量提高了生态有效性,但逐步WR递增具有挑战性。事实上,在自由游泳期间,INC 通常涉及以逐渐增加的速度14、15的设定距离间隔(例如 200 米)。这意味着测试由具有较大不相等的 WR 增量的长阶段组成。因此,使用这个测试18,19的研究人员报告只有一个代谢断点(通常称为”厌氧阈值”)也就不足为奇了。相反,我们最近已经表明,V[O2GET和 V-O2RCP都可以从收集的数据中确定,而游泳者在游泳池中进行静静游泳时,对逐渐和快速增加的负载(即增量系绳游泳)20。虽然游泳过程中存在的独特呼吸模式可能使上述断点与典型的评估模式(个人观察)相比更难识别,但我们认为,这种测试方法可能适合作为”游泳测速仪”,可用于对游泳者进行心肺评估,其方式类似于骑自行车者使用固定循环的方式。事实上,我们已经表明,V[O2GET,V[O2RCP和运动经济性(如V[O2-负载斜率所示)》都可以从20以下描述的快速递增的系绳游泳协议中确定。

Protocol

从下述代表性主题数据中提取的研究中,参与者须在实验程序、相关风险和参与的潜在好处解释后,在开始测试之前给予书面知情同意。第一次访问包括一次熟悉会议,在培训期间,游泳者被介绍到系绳游泳的概念和在实际测试中有效的测量技术。在第二次访问期间进行了全方位的系绳游泳测试,并在第三次访问中执行了快速增加的系绳游泳协议。两项测试均在半奥林匹?…

Representative Results

表1中所示和图1-4中所示的数据显示了男性游泳运动员(年龄,24岁)观察到的响应概况。在收集数据时,这位游泳运动员已经接受7年的竞技游泳训练。他的专长是短距离(即50米和100米自由泳)。 INC 上的初始负载设定在超过此游泳者在开始全能游泳 (F基) 之前保持身体对齐所需的负载,其?…

Discussion

一般来说,从INC对耐力运动员的评估中得出的主要兴趣参数是V_O2max,它用于监测运动员的心肺健康水平。此外,V•O2max在规定训练计划时通常用作分配练习 WR 的方法(即,WR 指定为 V•O2max的百分比)。然而,越来越多的研究证实,肺气交换(以及,进而,肌肉代谢)对WR线性增加的反应不是线性的,重要的是,这种非线性的特征因不同的个体(以及…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了葡萄牙CIPER-科学和技术基金会(CFCT)的支持(UID/DTP/00447/2019),部分资金来自巴西高级科学基金会,其中部分资金来自巴西国家科学与技术基金会(CAPES)的资助。 和圣保罗研究基金会 – FAPESP (PROCESS 2016/04544-3 和 2016/17735-1)。作者感谢若昂·吉列尔梅·德奥利维拉在数据采样方面给予的帮助。Mério A. C. Espada 感谢葡萄牙体育和青年学院 IPDJ 的财政支持。

Materials

3-L syringe Hans Rudolph Calibration device
Aquatrainer COSMED Snorkel system/gas-exchange measurement
K4b2 COSMED Portable CPET unit/gas-exchange measurement
N200PRO Cefise Software program for analysis of force signal
Pacer 2 Swim Kulzer TEC Swimming velocity management/underwater LED line
Tether-system Own design Pulley-Rope system/loading management
Tether attachment CEFISE Bracket for attachment to swimmer

References

  1. Hill, A. V., Lupton, H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. Quarterly Journal of Medicine. 16 (62), 135-171 (1923).
  2. Davis, H. A., Bassett, J., Hughes, P., Gass, G. C. Anaerobic threshold and lactate turnpoint. European Journal of Applied Physiology Occupational Physiology. 50 (3), 383-392 (1983).
  3. Beaver, W. L., Wasserman, K., Whipp, B. J. A new method for detecting anaerobic threshold by gas exchange. Journal of Applied Physiology. 60 (6), 2020-2027 (1986).
  4. Whipp, B. J., Wasserman, K. Oxygen uptake kinetics for various intensities of constant-load work. Journal of Applied Physiology. 33 (3), 351-356 (1972).
  5. Black, M. I., et al. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. Journal of Applied Physiology. 122 (3), 446-459 (2017).
  6. Whipp, B. J. Dynamics of pulmonary gas exchange. Circulation. 76 (6 Pt 2), V118-V128 (1987).
  7. Keir, D. A., et al. Exercise Intensity Thresholds: Identifying the Boundaries of Sustainable Performance. Medicine and Science in Sports and Exercise. 47 (9), 1932-1940 (2017).
  8. Keir, D. A., Paterson, D. H., Kowalchuk, J. M., Murias, J. M. Using ramp-incremental VO2 responses for constant-intensity exercise selection. Applied Physiology, Nutrition and Metabolism. 43 (9), 882-892 (2018).
  9. Iannetta, D., et al. An equation to predict the maximal lactate steady state from ramp-incremental exercise test data in cycling. Journal of Science and Medicine in Sport. 21 (12), 1274-1280 (2018).
  10. Iannetta, D., Inglis, E. C., Fullerton, C., Passfield, L., Murias, J. M. Metabolic and performance-related consequences of exercising at and slightly above MLSS. Scandinavian Journal of Medicine & Science in Sports. 28 (12), 2381 (2018).
  11. DiMenna, F. J., Jones, A. M. “Linear” Versus “Nonlinear” VO2 Responses to Exercise: Reshaping Traditional Beliefs. Journal of Exercise Science & Fitness. 7 (2), 67-84 (2009).
  12. Mitchell, J. H., Sproule, B. J., Chapman, C. B. The physiological meaning of the maximal oxygen intake test. Journal of Clinical Investigation. 37 (4), 538-547 (1958).
  13. McArdle, W. D., Katch, F. I., Pechar, G. S. Comparison of continuous and discontinuous treadmill and bicycle tests for max VO2. Medicine and Science in Sports and Exercise. 5 (3), 156-160 (1973).
  14. Whipp, B. J., Davis, J. A., Torres, F., Wasserman, K. A test to determine parameters of aerobic function during exercise. Journal of Applied Physiology: Respiratory Environmental and Exercise Physiology. 50 (1), 217-221 (1981).
  15. Whipp, B. J., Davis, J. A., Wasserman, K. Ventilatory control of the ‘isocapnic buffering’ region in rapidly-incremental exercise. Respiratory Physiology. 76 (3), 357-367 (1989).
  16. Boone, J., Bourgois, J. The oxygen uptake response to incremental ramp exercise: methodogical and physiological issues. Sports Medicine. 42 (6), 511-526 (2012).
  17. Sousa, A., et al. Critical evaluation of oxygen-uptake assessment in swimming. International Journal of Sports Physiology and Performance. 9 (2), 190-202 (2014).
  18. Fernandes, R. J., Sousa, M., Machado, L., Vilas-Boas, J. P. Step length and individual anaerobic threshold assessment in swimming. International Journal of Sports Medicine. 32 (12), 940-946 (2011).
  19. Ribeiro, J., et al. Metabolic and ventilatory thresholds assessment in front crawl swimming. The Journal of Sports Medicine and Physical Fitness. 55 (7-8), 701-707 (2015).
  20. Pessôa Filho, D. M., et al. A rapidly incremented tethered-swimming test for defining domain-specific training zones. Journal of Human Kinetics. 57 (1), 117-128 (2017).
  21. Dopsaj, M., et al. The relationship between 50m-freestyle results and characteristics of tethered forces in male sprint swimmers: A new approach to tethered swimming test. Physical Education & Sport. 1 (7), 15-22 (2000).
  22. Wheatley, C. M., et al. Conducting Maximal and Submaximal Endurance Exercise Testing to Measure Physiological and Biological Responses to Acute Exercise in Humans. Journal of Visualized Experiments. 17 (140), (2018).
  23. Lansley, K. E., DiMenna, F. J., Bailey, S. J., Jones, A. M. A ‘new’ method to normalise exercise intensity. International Journal of Sports Medicine. 32 (7), 535-541 (2011).
  24. Iannetta, D., et al. A Critical Evaluation of Current Methods for Exercise Prescription in Women and Men. Medicine and Science in Sports and Exercise. , (2019).
  25. Scharhag-Rosenberger, F., Meyer, T., Gässler, N., Faude, O., Kindermann, W. Exercise at given percentages of VO2max: heterogeneous metabolic responses between individuals. Journal of Science and Medicine in Sport. 13 (1), 74-79 (2010).
  26. Midgley, A. W., McNaughton, L. R., Jones, A. M. Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge?. Sports Medicine. 37 (10), 857-880 (2007).
  27. Jones, A. M., DiMenna, F. J., Cardinale, M., Newton, R., Nosaka, K. Cardiovascular Assessment and Aerobic Training Prescription. Strength and Conditioning: Biological Principles and Practical Applications. , 291-304 (2011).
  28. Beneke, R., von Duvillard, S. P. Determination of maximal lactate steady state response in selected sports events. Medicine and Science in Sports and Exercise. 28 (2), 241-246 (1996).
  29. Beneke, R. M., Hütler, M., Leithäuser, R. M. Maximal lactate-steady-state independent of performance. Medicine and Science in Sports and Exercise. 32 (6), 1135-1139 (2000).
  30. Smith, C. G., Jones, A. M. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. European Journal of Applied Physiology. 85 (1-2), 19-26 (2001).
  31. Pringle, J. S., Jones, A. M. Maximal lactate steady state, critical power and EMG during cycling. European Journal of Applied Physiology. 88 (3), 214-226 (2002).
  32. Mattioni Maturana, F., Keir, D. A., McLay, K. M., Murias, J. M. Can measures of critical power precisely estimate the maximal metabolic steady-state?. Applied Physiology Nutrition and Metabolism. 41 (11), 1197-1203 (2013).
  33. Jones, A. M., Burnley, M., Black, M. I., Poole, D. C., Vanhatalo, A. The maximal metabolic steady state: redefining the ‘gold standard’. Physiological Reports. 7 (10), e14098 (2018).
  34. Scheuermann, B. W., Kowalchuk, J. M. Attenuated respiratory compensation during rapidly incremented ramp exercise. Respiratory Physiology. 114 (3), 227-238 (1998).
  35. Morgan, D. W., et al. Variation in the aerobic demand of running among trained and untrained subjects. Medicine and Science in Sports and Exercise. 27 (3), 404-409 (1995).
  36. Franch, J., Madsen, K., Djurhuus, M. S., Pedersen, P. K. Improved running economy following intensified training correlates with reduced ventilatory demands. Medicine and Science in Sports and Exercise. 30 (8), 1250-1256 (1998).
  37. Holmer, I., Lundin, A., Eriksson, B. Maximum oxygen uptake during swimming and running by elite swimmers. Journal of Applied Physiology. 36 (6), 711-714 (1974).
  38. Bonen, A., Wilson, B. A., Yarkony, M., Belcastro, A. N. Maximal oxygen uptake during free, tethered, and flume swimming. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology. 48 (2), 232-235 (1980).
  39. Magel, J. R., Faulkner, J. A. Maximum oxygen uptakes of college swimmers. Journal of Applied Physiology. 22 (5), 929-933 (1967).
  40. Poole, D. C., Jones, A. M. Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. Journal of Applied Physiology. 122 (4), 997-1002 (2017).

Play Video

Cite This Article
Pessôa Filho, D. M., Massini, D. A., Siqueira, L. O. C., Santos, L. G. A., Vasconcelos, C. M. T., Almeida, T. A. F., Espada, M. A. C., Reis, J. F., Alves, F. B., DiMenna, F. J. A Rapidly Incremented Tethered-Swimming Maximal Protocol for Cardiorespiratory Assessment of Swimmers. J. Vis. Exp. (155), e60630, doi:10.3791/60630 (2020).

View Video