Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biochemistry

OaAEP1-मध्यस्थता एंजाइमैटिक संश्लेषण और एकल अणु बल स्पेक्ट्रोस्कोपी के लिए बहुलक प्रोटीन के Immobilization

Published: February 5, 2020 doi: 10.3791/60774

Summary

यहां, हम एक नियंत्रित अनुक्रम के साथ प्रोटीन बहुलक बनाने एंजाइमों द्वारा प्रोटीन मोनोमर को संजन्य करने के लिए एक प्रोटोकॉल पेश करते हैं और इसे एकल-अणु बल स्पेक्ट्रोस्कोपी अध्ययनों के लिए सतह पर स्थिर करते हैं।

Abstract

हाल के वर्षों में रासायनिक और जैव-संयोजन तकनीकों को तेजी से विकसित किया गया है और प्रोटीन पॉलिमर के निर्माण की अनुमति देता है। हालांकि, एक नियंत्रित प्रोटीन बहुलीकरण प्रक्रिया हमेशा एक चुनौती है। यहां, हमने तर्कसंगत रूप से नियंत्रित अनुक्रम में कदम से बहुलक प्रोटीन कदम के निर्माण के लिए एक एंजाइमैटिक पद्धति विकसित की है। इस विधि में, प्रोटीन मोनोमर का सी-टर्मिनस ओएएईपी 1(ओल्डेंलैंडिया एफिडेनिसिस शतावरील एंडोपेप्टिडेस)1) का उपयोग करके प्रोटीन संयुग्मन के लिए एनजीएल है जबकि एन-टर्मिनस अस्थायी एन-टर्मिनल की रक्षा के लिए एक क्लेवबल टीईवी (तंबाकू etch वायरस) दरार साइट प्लस एक एल (ENLYFQ/GL) था। नतीजतन, OaAEP1 एक समय में केवल एक प्रोटीन मोनोमर जोड़ने में सक्षम था, और फिर TEV प्रोटीज क्यूऔर जी के बीच एन-टर्मिनस cleaved एनएच 2-Gly-Leu बेनकाब करने के लिए । फिर यूनिट अगले OaAEP1 लिगेशन के लिए तैयार है। इंजीनियर पॉलीप्रोटीन की जांच परमाणु बल माइक्रोस्कोपी आधारित एकल अणु बल स्पेक्ट्रोस्कोपी (एएफएम-एसएमएफएस) का उपयोग करके व्यक्तिगत प्रोटीन डोमेन का खुलासा करके की जाती है । इसलिए, यह अध्ययन पॉलीप्रोटीन इंजीनियरिंग और स्थिरीकरण के लिए एक उपयोगी रणनीति प्रदान करता है।

Introduction

सिंथेटिक पॉलिमर की तुलना में, प्राकृतिक बहु-डोमेन प्रोटीन में एक समान संरचना होती है जिसमें एक अच्छी तरह से नियंत्रित संख्या और उपडोमेन1का प्रकार होता है। इस विशेषता से आमतौर पर जैविक कार्य में सुधार होता है और स्थिरता2,3होती है . साइस्टीन आधारित डिसुल्फिफाइड बॉन्ड कपलिंग और रिकॉम्बिनेंट डीएनए तकनीक जैसे कई दृष्टिकोणों को कई डोमेन4,5,6,7के साथ इस तरह के बहुलीकृत प्रोटीन के निर्माण के लिए विकसित किया गया है। हालांकि, पूर्व विधि हमेशा एक यादृच्छिक और अनियंत्रित अनुक्रम में परिणाम है, और बाद में एक विषाक्त और बड़े आकार के प्रोटीन की अतिअभिव्यक्ति के लिए कठिनाई और कोफैक्टर और अन्य नाजुक एंजाइमों के साथ जटिल प्रोटीन की शुद्धि सहित अन्य समस्याओं की ओर जाता है।

इस चुनौती का सामना करने के लिए, हम एक एंजाइमैटिक विधि विकसित करते हैं जो एक प्रोटीन लिगाज ओएएईपी 1का उपयोग करके एक स्टेपवाइज फैशन में पॉलीमर/पॉलीप्रोटीन के लिए एक साथ प्रोटीन मोनोमर को एक साथ संजोए रखताहै। OaAEP1 एक सख्त और कुशल एंडोपेप्टिडास है। दो प्रोटीन को 30 से कम समय में OaAEP1 द्वारा दो टर्मिनी के माध्यम से Asn-Gly-Leu अनुक्रम (NGL) के रूप में सहसंयोजक के रूप में जोड़ा जा सकता है अगर एन-टर्मिनस ग्ली-ली-एलयू अवशेष (जीएल) है और जिसमें से अन्य सी-टर्मिनस एनजीएल अवशेष10है । हालांकि, केवल प्रोटीन मोनोमर को जोड़ने के लिए OaAEP1 का उपयोग साइस्टीन आधारित युग्मन विधि जैसे अनियंत्रित अनुक्रम के साथ प्रोटीन बहुलक की ओर जाता है। इसलिए, हम प्रोटीन इकाई के एन-टर्मिनस को हटाने योग्य टीईवी प्रोटीज़ साइट के साथ-साथ ENLYFQ/G-L-POI के रूप में एक ल्यूसिन अवशेषों के साथ डिजाइन करते हैं । टीईवी क्लीवेज से पहले, एन-टर्मिनल OaAEP1 लिगेशन में भाग नहीं लेगा। और फिर एन-टर्मिनस में जीएल अवशेष, जो आगे OaAEP1 लिगेशन के साथ संगत हैं, TEV दरार के बाद उजागर होता है। इस प्रकार, हमने अपेक्षाकृत अच्छी तरह से नियंत्रित अनुक्रम के साथ पॉलीप्रोटीन की एक अनुक्रमिक एंजाइमैटिक बायोसिंथेसिस विधि हासिल की है।

यहां, हमारे स्टेपवाइज एंजाइमैटिक संश्लेषण विधि का उपयोग पॉलीप्रोटीन नमूना तैयारकरने में किया जा सकता है, जिसमें अनुक्रम-नियंत्रित और अनियंत्रित, और एकल अणु अध्ययनों के लिए प्रोटीन स्थिरीकरण भी शामिल है, विशेष रूप से जटिल प्रणाली के लिए जैसे मेटलोप्रोटीन।

इसके अलावा, एएफएम आधारित एसएमएफएस प्रयोग हमें एकल अणु स्तर पर प्रोटीन बहुलक निर्माण और स्थिरता की पुष्टि करने की अनुमति देते हैं । एएफएम, ऑप्टिकल ट्वीजर और मैग्नेटिक ट्वीजर सहित एकल अणु बल स्पेक्ट्रोस्कोपी, नैनो में एक सामान्य उपकरण है जो यांत्रिक रूप से जैव अणु में हेरफेर करता है और उनकी स्थिरता को मापताहै 11,12,13,14,15,16, 17,18,19,20। एकल अणु एएफएम का व्यापक रूप से प्रोटीन (यूएन) फोल्डिंग21,22,23,24,25,रिसेप्टर-लिगामेंट इंटरैक्शन26,27,28,29,30,31,32,33,34के अध्ययन में व्यापक रूप से उपयोग किया गयाहै, 35, अकार्बनिक रासायनिक बॉन्ड20,36,37,38,39,40,41,42,43 औरमेटललोप्रोटीन44,45,46,47,48,49,50 में धातु-लिगलैंड बॉन्ड . यहां, एकल अणु AFM इसी प्रोटीन खुलासा संकेत के आधार पर संश्लेषित पॉलीप्रोटीन अनुक्रम को सत्यापित करने के लिए प्रयोग किया जाता है ।

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. प्रोटीन उत्पादन

  1. जीन क्लोन
    1. ब्याज के प्रोटीन (पीओआई): यूबिक्विटिन, रूबेडॉक्सिन (आरडी)51,सेल्यूलोज-बाइंडिंग मॉड्यूल (सीबीएम), डॉकरिन-एक्स डोमेन (एक्सडॉक) और रूमिनोकोकस फ्लैवफैक्से,तंबाकू नक़्क़ाशी वायरस (टीईवी) प्रोटीज, इलास्टिन-इप्पेप्टाइड (ईएलपीएस) से सामंजस्य खरीदें।
    2. पॉलीमरेज चेन रिएक्शन करें और विभिन्न प्रोटीन टुकड़ों से जीन को फिर से मिलाने के लिए तीन-प्रतिबंध पाचन एंजाइम सिस्टम बाम्हआई-बीजीएलII-केपीएनI का उपयोग करें।
    3. सीधे डीएनए अनुक्रमण द्वारा सभी जीन की पुष्टि करें।
  2. प्रोटीन अभिव्यक्ति और उत्पादन
    1. अभिव्यक्ति के लिए pQE80L-POI या pET28a-POI प्लाज्मिड के साथ ई. कोलाई BL21 (DE3) को बदलें।
    2. संबंधित एंटीबायोटिक दवाओं के साथ पौंड माध्यम के 15 mL में एक एकल कॉलोनी उठाओ (जैसे, १०० μg/mL ampicillin सोडियम नमक या ५० μg/mL, kanamycin) । 200 आरपीएम पर संस्कृतियों को 16-20 घंटे के लिए 37 डिग्री सेल्सियस पर हिलाते रहें।
    3. पौंड माध्यम (1:50 कमजोर पड़ने) के 800 mL में रातोंरात संस्कृतियों को पतला करें। रूबेडॉक्सिन के लिए, 1,800 x ग्रामपर संस्कृति को अपकेंद्रित ्रित करें, फिर एम 9 मीडियम के 15 मिलील में फिर से सस्पेंड करें (0.4% ग्लूकोज के साथ पूरक, 0.1 m CaCl2,2 m M MgSO4),और फिर इसे एम 9 मीडियम के 800 मिलील में पतला करें।
    4. संस्कृति को 200 आरपीएम पर मिलाते हुए 37 डिग्री सेल्सियस पर इनक्यूबेट करें, जब तक कि संस्कृति 0.6 के 600 एनएम (ओडी600)पर ऑप्टिकल घनत्व तक न पहुंच जाए। प्रोटीन अभिव्यक्ति के परीक्षण के लिए पूर्व प्रेरण नियंत्रण के रूप में संस्कृति के 100 μL नमूना सहेजें।
    5. आईपीटीजी को 1 एमएम की अंतिम एकाग्रता में जोड़कर प्रोटीन अभिव्यक्ति को प्रेरित करें और 200 आरपीएम पर 4 घंटे के लिए 37 डिग्री सेल्सियस पर संस्कृति को हिलाएं। प्रोटीन अभिव्यक्ति के परीक्षण के लिए पोस्ट-इंडक्शन नियंत्रण के रूप में संस्कृति का 100 माइक्रोन नमूना आरक्षित करें।
    6. 4 डिग्री सेल्सियस पर 25 मिन के लिए 13,000 x ग्राम पर संस्कृति को केंद्रित करें और शुद्धि से पहले -80 डिग्री सेल्सियस पर स्टोर करें।
      नोट: प्रोटोकॉल यहां रोका जा सकता है ।
  3. ब्याज के प्रोटीन की शुद्धि
    1. लिसिस बफर (50 एमएम ट्रिस, 150 एमएम नैल, पीएच 7.4 युक्त DNase, RNase, PMSF) के 25 mL में कोशिकाओं को फिर से निलंबित करें और बर्फ पर 30 min के लिए इसे ले जाने के लिए एक सोनिकेटर (15% आयाम) का उपयोग करें।
    2. 4 डिग्री सेल्सियस पर 40 मिन के लिए 19,000 x ग्राम पर सेल लाइसेट स्पष्ट करें।
    3. सह-एनटीए या नी-एनटीए एफ़िनिटी कॉलम के पैक 1 एमएल (बिस्तर की मात्रा) और अल्ट्राप्यूटिक पानी के 10 कॉलम वॉल्यूम (सीवी) के साथ कॉलम को धोएं और फिर गुरुत्वाकर्षण प्रवाह द्वारा 10 सीवी वॉश बफर (50 मीटर ट्रिस, 150 एमएम नैल, 2 एमएम इमिडाजोल, पीएच 7.4) धोएं।
    4. तीन बार गुरुत्वाकर्षण प्रवाह द्वारा कॉलम के माध्यम से प्रोटीन अधिनेत को पास करें।
    5. संदूषक प्रोटीन को दूर ले जाने के लिए 50 सीवी के साथ कॉलम पर वॉश बफर डालें।
    6. बर्फ के 3 सीवी के साथ बाध्य प्रोटीन-ठंडा एल्यूटियन बफर (20 एमएम ट्रिस, 400 एमएम एम एनएसीएल, 250 एम एम इमिडाजोल, पीएच 7.4) के साथ बाध्य प्रोटीन को एल्यूट करें। जब रूबेडॉक्सिन प्रोटीन की बात आती है, तो 4 डिग्री सेल्सियस पर पीएच 8.5 पर एनियन एक्सचेंज कॉलम का उपयोग करके आगे एनियन एक्सचेंज शुद्धि आवश्यक है।
    7. एसडीएस-पेज द्वारा नमूने का विश्लेषण करें।

2. कवरस्लिप और कैंटिलीवर सतह का कार्यात्मककरण

  1. कार्यात्मक कवरस्लिप सतह तैयार करना
    1. अल्ट्राप्योर पानी के 40 मीटर में 20 ग्राम पोटेशियम क्रोमेट भंग कर दें। धीरे-धीरे ग्लास रॉड के साथ पोटेशियम क्रोमेट समाधान में केंद्रित सल्फ्यूरिक एसिड के 360 मिलील को धीरे-धीरे हिलाएं और क्रोमिक एसिड तैयार करने के लिए जोड़ें।
      सावधानी: यहां इस्तेमाल किया रसायन और अंतिम क्रोमिक एसिड दृढ़ता से संक्षारक और अम्लीय है । उचित सुरक्षा उपकरणों के साथ काम करें। समाधान गर्मी जारी करता है जब केंद्रित सल्फ्यूरिक एसिड जोड़ते हैं, जिसका अर्थ है ठंडा करने के लिए धीमी गति से जोड़ना और उचित ठहराव।
    2. क्रोमिक एसिड ट्रीटमेंट द्वारा 30 मिन के लिए 80 डिग्री सेल्सियस पर ग्लास कवरस्लिप को साफ और सक्रिय करें। कवरस्लिप को पूरी तरह से 1% (v/v) APTES toluene समाधान में कमरे के तापमान पर 1 घंटे के लिए विसर्जित कर ते हैं, जबकि उन्हें प्रकाश से बचाते हैं ।
    3. टोल्यूईन और निरपेक्ष एथिल अल्कोहल के साथ कवरस्लिप को धोएं और नाइट्रोजन की धारा के साथ कवरस्लिप को सुखा लें।
    4. कवरस्लिप को 15 न्यूनतम के लिए 80 डिग्री सेल्सियस पर इनक्यूबेट करें और फिर कमरे के तापमान में ठंडा करें।
    5. दो स्थिर कवरस्लिप के बीच डिमेथिल सल्फासऑक्साइड (डीएमएसओ) समाधान में सल्फो-एसएमसी (1 एमजी/एमएल) के 200 माइक्रोन जोड़ें और प्रकाश से संरक्षित 1 एच के लिए इनक्यूबेट करें।
    6. अवशिष्ट सल्फो-एसएमसी को हटाने के लिए पहले डीएमएसओ के साथ कवरस्लिप को धोएं और फिर पूर्ण एथिल अल्कोहल के साथ।
    7. नाइट्रोजन की एक धारा के नीचे कवरस्लिप को सुखा लें।
    8. 200 माइक्रोएम जीएल-ईएलपी50एनएम-सी प्रोटीन समाधान के पाइप्ट 60 माइक्रोन एक कार्यात्मक कवरस्लिप पर और लगभग 3 घंटे के लिए इनक्यूबेट।
    9. बिना प्रतिक्रिया जीएल-ईएलपी50एनएम-सीको हटाने के लिए अल्ट्राप्योर पानी से कवरस्लिप को धोलें।
      नोट: कार्यात्मक कवरस्लिप 4 डिग्री सेल्सियस पर भंडारण के तहत लगभग दो सप्ताह के लिए सक्षम हैं।
  2. कार्यात्मक कैंटिलीवर सतह तैयारकरना
    1. क्रोमिक एसिड ट्रीटमेंट द्वारा 10 मिन के लिए 80 डिग्री सेल्सियस पर कैंटिवर्स को साफ करें।
    2. 1% (v/v) APTES toluene समाधान के साथ अमीनो-सीलनाइजेशन द्वारा कैंटिलीवर कार्यात्मक और फिर सल्फो-एसएमसी को conjugating से पहले 15 min के लिए ८० डिग्री सेल्सियस पर कैंटिलीवर सेंकना ।
    3. सी-ईएलपी50एनएम-एनजीएलको 1.5 घंटे के लिए सल्फो-एसएमसी के मैलेमिड समूह के साथ सतह पर लिंक करें।
    4. अल्ट्राप्योर पानी द्वारा कवरस्लिप पर बिना प्रतिक्रिया वाले सी-ईएलपी50एनएम-एनजीएलको धो लें।
    5. 200 माइक्रोन जीएल-सीबीएम-एक्सडॉक प्रोटीन समाधान में 200 एनएम ओएएईपी 1 को 20-30 मीटर के लिए 25 डिग्री सेल्सियस पर विसर्जित करें। फिर बिना प्रतिक्रिया वाले प्रोटीन को धोने के लिए एएफएम बफर (100 एमएम ट्रिस, 100 एमएम नैल, पीएच 7.4) का उपयोग करें।
      नोट: कैंटीवर्स और कवरस्लिप की सतह रसायन विज्ञान समान है।

3. नियंत्रित दृश्यों के साथ स्टेपवाइज पॉलीप्रोटीन तैयारी

  1. 30 मिन के लिए OaAEP1 द्वारा कवरस्लिप सतह पर स्थिर जीएल-ईएलपी50nm के लिए लिगेशन यूनिट Coh-tev-L-POI-NGL से लिंक करें ।
  2. किसी भी बिना प्रतिक्रिया वाले प्रोटीन को धोने के लिए एएफएम बफर (100 एमएम ट्रिस, 100 एमएम नैल, पीएच 7.4) के 15-20 मिलील का उपयोग करें।
  3. टीईवी प्रोटीज (0.5 एमएम ईटीए, 75 एमएम एनएसीएल, 25 एमएम ट्रिस-एचसीएल 10% [v/v] ग्लाइसेरोल, पीएच 8.0) के 100 माइक्रोन जोड़ें ताकि टीईवी पहचान स्थल पर प्रोटीन यूनिट को 25 डिग्री सेल्सियस पर 1 घंटे के लिए क्लीव किया जा सके।
  4. अवशिष्ट प्रोटीन को धोने के लिए एएफएम बफर के 15-20 मीटर का उपयोग करें।
  5. 30 मिन के लिए OaAEP1 द्वारा जीएल-यूबी-एनजीएल-ग्लास से लिगेशन यूनिट कोह-टेव-एल-पीओआई-एनजीएल को लिंक करें।
  6. कांच की सतह पर प्रोटीन निर्माण जीएल-(यूबी)एन-एनजीएलबनाने के लिए 3.3 से 3.5 एन-1 बार चरण दोहराएं। कोह-टेव-एल-(यूबी) एन-एनजीएल-ग्लास के रूप में प्रोटीन-बहुलक परआरक्षित कोहेसिन के लिए अंतिम टीवी दरार प्रतिक्रिया को छोड़ दें।

4. एएफएम प्रयोग माप और डेटा विश्लेषण

  1. एएफएम माप
    1. 10 एमएम सीएसीएल2 और 5 एमएम एस्कोम्बिक एसिड के साथ चैंबर में एएफएम बफर का 1 मिलील जोड़ें।
    2. प्रयोग के लिए कार्यात्मक एएफएम जांच के डी टिप चुनें। प्रत्येक प्रयोग से पहले एक सटीक वसंत स्थिर(कश्मीर)मूल्य के साथ एएफएम बफर में कैंटिलीवर को कैलिब्रेट करने के लिए समविभाजन सिद्धांत का उपयोग करें।
    3. कोहेसिन/डॉकरिन जोड़ी बनाने के लिए नमूना सतह पर कैंटिलीवर टिप संलग्न करें।
    4. सतह से 400 एनएमएस−1 के निरंतर वेग पर कैंटिलीवर को वापस लेना। इस दौरान 4000 हर्ट्ज के सैंपल रेट पर फोर्स एक्सटेंशन कर्व रिकॉर्ड करें।
  2. डेटा विश्लेषण
    1. जेपीके डेटा प्रोसेसिंग सेलेक्ट फोर्स-एक्सटेंशन ट्रेस का इस्तेमाल करें।
    2. निशान का विश्लेषण करने के लिए सॉफ्टवेयर का उपयोग करें। बहुलक लोच के कीड़ा की तरह श्रृंखला (WLC) मॉडल के साथ घटता फिट और व्यक्तिगत प्रोटीन खुलासा चोटी के लिए खुलासा बल और समोच्च लंबाई वृद्धि प्राप्त करते हैं ।
    3. खुलासा बल (u>) और समोच्च लंबाई वृद्धि (<;

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

OaAEP1 लिगेशन द्वारा आसन्न प्रोटीन के बीच पेश किए गए एनजीएल अवशेष बहुलक में प्रोटीन मोनोमर स्थिरता को प्रभावित नहीं करेंगे क्योंकि खुलासा बल (u>), और समोच्च लंबाई वृद्धि (c>) पिछले अध्ययन(चित्रा 1)के साथ तुलनीय है । रुबेडॉक्सिन प्रोटीन का शुद्धिकरण परिणाम चित्र 2में दिखाया गया है । टीईवी क्लीवेज के बाद प्रोटीन को साबित करने के लिए एक नियंत्रण अनुक्रम के साथ प्रोटीन बहुलक का निर्माण करने के लिए निम्नलिखित OaAEP1 लिगेशन के साथ संगत है और निर्माण उच्च दक्षता है, चित्रा 3 एक संदर्भ के रूप में एक एसडी-पेज छवि प्रदान करता है। फंक्शनल कैंटिलीवर और कवरस्लिप तैयार करने के चरणों का वर्णन चित्र4में किया गया है । स्टेपवाइज एंजाइमेटिक बायोसिंथेसिस और कवरस्लिप पर पॉलीप्रोटीन का इम्मोबिलाइजेशन चित्रा 5में दिखाया गया है । इस प्रोटोकॉल का उपयोग करें, नियंत्रित अनुक्रम के साथ एक प्रोटीन बहुलक बनाया जा सकता है और एएफएम आधारित एसएमएफएस प्रयोगों के लिए उपयुक्त है।

Figure 1
चित्रा 1: OaAEP1 द्वारा निर्मित पॉलीप्रोटीन के एएफएम-आधारित एसएमएफएस माप। (A)यूबी के विशिष्ट आराटूथ जैसे बल-विस्तार घटता (नीले रंग में वक्र 1) को ~ 23 एनएम की उम्मीद के साथ दिखाया गया था। (ख)तितर बितर साजिश Ub खुलासा बल (२०२ ± ४४ पीएन, औसत ± एस.डी., एन = १९८) और 'एलसी (23 ± 2 एनएम, औसत ± एस.डी.) के बीच संबंध प्रस्तुत करता है। इस आंकड़े को रेफरी 8 से संशोधित किया गया है। कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें ।

Figure 2
चित्रा 2: जीएल-जीबी1-फे (III) का यूवी-विस अवशोषण स्पेक्ट्रा-आरडी-एनजीएल और जीएल-जीबी1-(जेडएन)-आरडी-एनजीएल । Fe (III) फार्म आरडी (बाएं स्पेक्ट्रम, भूरे रंग में रंग, पीडीबी कोड: 1BRF) ४९५ एनएम और ५७९ एनएम पर ठेठ यूवी-विस अवशोषण चोटियों प्रस्तुत किया, जबकि Zn-फार्म (सही स्पेक्ट्रम, शराब में रंग का रंग, पीडीबी कोड: 1IRN) प्रस्तुत किया । इस आंकड़े को रेफरी 8 से संशोधित किया गया है। कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें ।

Figure 3
चित्रा 3: यूबीएस-पेज जेल यूबी डिमर बनाने के लिए टीईवी प्रोटीज़ और OaAEP1 का उपयोग करके स्टेपवाइज पाचन और लिगेशन के परिणाम। लेन 1-4 Coh-tev-L-Ub, TEV दरार, शुद्ध एस एफएफGFP-TEV प्रोटीज़ और शुद्ध उत्पाद (जीएल-यूबी) के परिणाम प्रोटीन मिश्रण दिखाया । लेन 5-7 cleaved जीएल-यूबी और Coh-tev-L-Ub-NGL लिगेशन मिश्रण के साथ (लेन 5) या बिना (लेन 6) OaAEP1 और शुद्ध OaAEP1 दिखाया । इस आंकड़े को रेफरी 8 से संशोधित किया गया है। कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें ।

Figure 4
चित्रा 4: कांच की कवरस्लिप और कैंटिलीवर को क्रियाशील बनाने के लिए प्रत्येक चरण का वर्णन करने वाला प्रक्रिया चार्ट। क्रोमिक एसिड द्वारा सफाई और सक्रियण के बाद, कवरस्लिप और कैंटिलीवर समान कार्यात्मकता प्रक्रिया साझा करते हैं, अंतिम चरण को छोड़कर, जिसमें जीएल-ईएलपी50एनएम-सीजोड़ों को कवरस्लिप के साथ जबकि सी-ईएलपी50एनएम-एनजीएलजोड़ों को कैंटिलीवर के साथ। कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें ।

Figure 5
चित्रा 5: सतह पर पॉलीप्रोटीन स्थिरीकरण के लिए प्रत्येक चरण का वर्णन करने वाला प्रक्रिया चार्ट। शीर्ष बाएं प्रक्रिया प्रवाह आरेख कवरस्लिप पर नियंत्रित दृश्यों के साथ पॉलीप्रोटीन के चरणवार निर्माण को दिखाता है। शीर्ष सही आरेख एएफएम माप में उपयोग किए जाने वाले कार्यात्मक कैंटिलीवर की तैयारी को दर्शाता है। कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें ।

Figure 6
चित्रा 6: एएफएम आधारित एसएमएफएस द्वारा तर्कसंगत रूप से नियंत्रित अनुक्रम के साथ प्रोटीन पॉलिमर के विशिष्ट खुलासा निशान। (A)यूबी के ठेठ आराटूथ जैसे बल-विस्तार घटता ने उम्मीद के अनुसार ~ 23 एनएम कीसी प्रस्तुत की। (ख)आरडी के विशिष्ट बल-विस्तार घटता ने उम्मीद के अनुसार ~ 13 एनएम कीसी प्रस्तुत की। (ग)(यूबी-आरडी)एन प्रोटीन मिश्रण के विशिष्ट बल-विस्तार घटता है जिसमें नीली चोटी का मतलब यूबी की खुलासा घटनाओं का मतलब है जबकि लाल का मतलब आरडी है । इस आंकड़े को रेफरी 8 से संशोधित किया गया है। कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें ।

Figure 6
अनुपूरक चित्र 1: दो प्रतिक्रियाकर्ताओं के बीच विभिन्न अनुपात के तहत प्रोटीन लिगेशन दक्षता के एसडी-पेज जेल परिणाम। लिगेशन एफिशिएंसी 20% थी जब अनुपात 1 से 1 है और 10 से 1 के अनुपात में 75% तक पहुंच गया। इस आंकड़े को रेफरी 8 से संशोधित किया गया है। कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें ।

Subscription Required. Please recommend JoVE to your librarian.

Discussion

हमने एंजाइमैटिक बायोसिंथेसिस और पॉलीप्रोटीन के स्थिरीकरण के लिए एक प्रोटोकॉल का वर्णन किया है और एएफएम-आधारित एसएमएफएस द्वारा पॉलीप्रोटीन डिजाइन का सत्यापन किया है। यह पद्धति एक डिजाइन किए गए अनुक्रम में प्रोटीन-बहुलक के निर्माण के लिए एक उपन्यास दृष्टिकोण प्रदान करती है, जो पॉलीप्रोटीन इंजीनियरिंगऔर स्थिरीकरण4,6,52,53,54, 55,56,57,58,59,60,61के लिए पिछले तरीकों का पूरक है।

पॉलीप्रोटीन निर्माण7,62के लिए क्लासिक पुनः संयोजन डीएनए पद्धति के साथ तुलना में, छोटे प्रोटीन मोनोमर के बीच लिगेशन पर हमारी विधि कुर्सियां। इस प्रकार, यह पॉलीप्रोटीन निर्माण के लिए बड़े आकार या जहरीले प्रोटीन अणुओं की अभिव्यक्ति की अनुमति देता है। इसके अतिरिक्त, यह संयुग्मण से पहले प्रोटीन मोनोमर की शुद्धि की अनुमति देता है।

प्रोटीन बहुलीकरण4के लिए इंटरमॉलिक्यूलर डिसल्फाइड बांड बनाने वाली व्यापक रूप से उपयोग की जाने वाली द्वि-साइस्टीन विधि की तुलना में, हमारी एंजाइमैटिक विधि ओएएईपी 1 और टीईवी प्रोटीज़ दोनों का उपयोग करके अपेक्षाकृत नियंत्रित अनुक्रम और परिभाषित कनेक्शन ज्यामिति के साथ पॉलीप्रोटीन में परिणाम देती है। और यह साइस्टीन का उपयोग नहीं करता है, जो कई प्रोटीन के लिए एक आवश्यक कार्यात्मक अवशेष है।

हमारी विधि ज्यादातर सॉर्टेस आधारित प्रोटीन कंजुगरेशन59के समान है। हमारी विधि की अनूठी विशेषता यह है कि OaAEP1 आधारित प्रोटीन लिगेशन बहुत अधिक कुशल है, इस प्रकार उचित उपज10,53के साथ प्रोटीन पेंटामर के निर्माण की अनुमति देता है। यह भी लिगेशन के लिए कम अवशेषों की जरूरत है और एक छोटे तीन अवशेषों NGL लिंकर में परिणाम है । नतीजतन, यह कोई "लिंकर प्रभाव" नहीं दिखाता है क्योंकि नवगठित एनजीएल लिंकर व्यक्तिगत प्रोटीन मोनोमर की स्थिरता को प्रभावित नहीं करता है या किसी भी अप्राकृतिक प्रोटीन-प्रोटीन बातचीत को प्रेरित नहीं करता है। फिर भी हमारा मानना है कि सभी तरीकों के अपने फायदे और नुकसान हैं। उदाहरण के लिए, क्लासिक रिकॉम्बिनेंट डीएनए विधि प्रोटीन मोनोमर के बीच किसी भी अवशेष को नहीं जोड़ती है और लिगेशन के लिए किसी भी एंजाइम के उपयोग की आवश्यकता नहीं होती है। और द्वि-साइस्टीन विधि प्रोटीन बहुलीकरण के लिए सरल और आसान है। इस प्रकार, वे सभी विभिन्न प्रयोगात्मक आवश्यकताओं के तहत उपयोगी हो सकते हैं।

पॉलीप्रोटीन के हमारे चरणवार निर्माण के लिए, बिना प्रतिक्रिया वाले प्रोटीन को पूरी तरह से हटाना महत्वपूर्ण है। प्रतिक्रिया व्यक्त की गई सतह को ध्यान से साफ करने के लिए एएफएम बफर की पर्याप्त मात्रा और पर्याप्त समय लें। अन्यथा, अवशिष्ट प्रोटीन या प्रोटीज़ आगे संश्लेषण प्रतिक्रियाओं को प्रभावित करेगा।

OaAEP1 लिगेशन की दक्षता हमारी विधि के लिए एक महत्वपूर्ण सीमा है क्योंकि टीईवी दरार दक्षता लगभग पूरी हो चुकी है (96%)। लिगेशन दक्षता में सुधार के लिए दो प्रतिक्रियाकर्ताओं, जीएल-प्रोटीन और प्रोटीन-एनजीएल के बीच अनुपात बढ़ाना महत्वपूर्ण है। हमारे अध्ययन से पता चलता है कि जब प्रोटीन-एनजीएल जीएल-प्रोटीन के लिए दस गुना है, दक्षता 20% से बढ़ जाती है (अनुपात 1 से 1 है) ७५%(अनुपूरक चित्रा 1)। रिक्रेड का उपभोग करना महत्वपूर्ण है, जिसे सतह पर स्थिर किया गया था क्योंकि मुक्त प्रतिक्रियाकर्ता को बफर के साथ धोने से दूर ले जाया जा सकता है। इसके अतिरिक्त, क्या एन-या सी-टर्मिनस समाधान के संपर्क में है, यह भी लिगेशन के लिए एक महत्वपूर्ण कारक है। यह संबंधित टर्मिनल में मान्यता प्राप्त साइट वाले लिंकर को जोड़कर टर्मिनल को बेनकाब करने के लिए एक वैकल्पिक दृष्टिकोण है।

अंत में, हमारा प्रोटोकॉल एक डिजाइन किए गए अनुक्रम में प्रोटीन को संजोने का एक एंजाइमैटिक तरीका है। यह एकल अणु अध्ययनों में प्रोटीन के नमूनों को जोड़े और स्थिर करने के लिए एक वैकल्पिक दृष्टिकोण भी प्रदान करता है।

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

लेखकों के पास खुलासा करने के लिए कुछ नहीं है ।

Acknowledgments

इस काम को चीन के नेशनल नेचुरल साइंस फाउंडेशन (ग्रांट नंबर 21771103, 21977047), जियांग्सू प्रांत के नेचुरल साइंस फाउंडेशन (ग्रांट नंबर एक) ने सपोर्ट किया। बीके20160639) और जियांग्सू प्रांत का शुआंगचुआंग कार्यक्रम।

Materials

Name Company Catalog Number Comments
iron (III) chloride hexahydrate Energy chemical 99%
Zinc chloride Alfa Aesar 100.00%
calcium chloride hydrate Alfa Aesar 99.9965% crystalline aggregate
L-Ascorbic Acid Sigma Life Science Bio Xtra, ≥99.0%, crystalline
(3-Aminopropyl) triethoxysilane Sigma-Aldrich ≥99%
sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate Thermo Scientific 90%
Glycerol Macklin 99%
5,5'-dithiobis(2-nitrobenzoic acid) Alfa Aesar
Genes Genscript
Equipment
Nanowizard 4 AFM JPK Germany
MLCT cantilever Bruker Corp
Mono Q 5/50 GL GE Healthcare
AKTA FPLC system GE Healthcare
Glass coverslip Sail Brand
Nanodrop 2000 Thermo Scientific
Avanti JXN-30 Centrifuge Beckman Coulter
Gel Image System Tanon

DOWNLOAD MATERIALS LIST

References

  1. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 276 (5315), 1109-1112 (1997).
  2. Yang, Y. J., Holmberg, A. L., Olsen, B. D. Artificially Engineered Protein Polymers. Annual Review of Chemical and Biomolecular Engineering. 8 (1), 549-575 (2017).
  3. Yang, J., et al. Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology. Proceedings of the National Academy of Sciences of the United States of America. 115 (36), 8509-8517 (2018).
  4. Dietz, H., et al. Cysteine engineering of polyproteins for single-molecule force spectroscopy. Nature Protocols. 1 (1), 80-84 (2006).
  5. Carrion-Vazquez, M., et al. Mechanical and chemical unfolding of a single protein: A comparison. Proceedings of the National Academy of Sciences of the United States of America. 96 (7), 3694-3699 (1999).
  6. Hoffmann, T., et al. Rapid and Robust Polyprotein Production Facilitates Single-Molecule Mechanical Characterization of beta-Barrel Assembly Machinery Polypeptide Transport Associated Domains. ACS Nano. 9 (9), 8811-8821 (2015).
  7. Hoffmann, T., Dougan, L. Single molecule force spectroscopy using polyproteins. Chemical Society Reviews. 41 (14), 4781-4796 (2012).
  8. Deng, Y., et al. Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level. Nature Communications. 10 (1), 2775 (2019).
  9. Yuan, G., et al. Single-Molecule Force Spectroscopy Reveals that Iron-Ligand Bonds Modulate Proteins in Different Modes. The Journal of Physical Chemistry Letters. 10 (18), 5428-5433 (2019).
  10. Yang, R., et al. Engineering a Catalytically Efficient Recombinant Protein Ligase. Journal of the American Chemical Society. 139 (15), 5351-5358 (2017).
  11. Woodside, M. T., Block, S. M. Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy. Annual Review of Biophysics. 43, 19-39 (2014).
  12. Sen Mojumdar, S., et al. Partially native intermediates mediate misfolding of SOD1 in single-molecule folding trajectories. Nature Communications. 8 (1), 1881 (2017).
  13. Singh, D., Ha, T. Understanding the Molecular Mechanisms of the CRISPR Toolbox Using Single Molecule Approaches. ACS Chemical Biology. 13 (3), 516-526 (2018).
  14. You, H., Le, S., Chen, H., Qin, L., Yan, J. Single-molecule Manipulation of G-quadruplexes by Magnetic Tweezers. Journal of Visualized Experiments. (127), e56328 (2017).
  15. Suren, T., et al. Single-molecule force spectroscopy reveals folding steps associated with hormone binding and activation of the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America. 115 (46), 11688-11693 (2018).
  16. Tapia-Rojo, R., Eckels, E. C., Fernández, J. M. Ephemeral states in protein folding under force captured with a magnetic tweezers design. Proceedings of the National Academy of Sciences of the United States of America. 116 (16), 7873-7878 (2019).
  17. Chen, H., et al. Dynamics of Equilibrium Folding and Unfolding Transitions of Titin Immunoglobulin Domain under Constant Forces. Journal of the American Chemical Society. 137 (10), 3540-3546 (2015).
  18. Fu, L., Wang, H., Li, H. Harvesting Mechanical Work From Folding-Based Protein Engines: From Single-Molecule Mechanochemical Cycles to Macroscopic Devices. Chinese Chemical Society. 1 (1), 138-147 (2019).
  19. Scholl, Z. N., Li, Q., Josephs, E., Apostolidou, D., Marszalek, P. E. Force Spectroscopy of Single Protein Molecules Using an Atomic Force Microscope. Journal of Visualized Experiments. (144), e55989 (2019).
  20. Zhang, S., et al. Towards Unveiling the Exact Molecular Structure of Amorphous Red Phosphorus by Single-Molecule Studies. Angewandte Chemie International Edition. 58 (6), 1659-1663 (2019).
  21. Yu, H., Siewny, M. G., Edwards, D. T., Sanders, A. W., Perkins, T. T. Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science. 355 (6328), 945-950 (2017).
  22. Thoma, J., Sapra, K. T., Müller, D. J. Single-Molecule Force Spectroscopy of Transmembrane β-Barrel Proteins. Annual Review of Analytical Chemistry. 11 (1), 375-395 (2018).
  23. Chen, Y., Radford, S. E., Brockwell, D. J. Force-induced remodelling of proteins and their complexes. Current Opinion in Structural Biology. 30, 89-99 (2015).
  24. Takahashi, H., Rico, F., Chipot, C., Scheuring, S. alpha-Helix Unwinding as Force Buffer in Spectrins. ACS Nano. 12 (3), 2719-2727 (2018).
  25. Borgia, A., Williams, P. M., Clarke, J. Single-molecule studies of protein folding. Annu. Rev. Biochem. 77, 101-125 (2008).
  26. Florin, E., Moy, V., Gaub, H. Adhesion forces between individual ligand-receptor pairs. Science. 264 (5157), 415-417 (1994).
  27. Zakeri, B., et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proceedings of the National Academy of Sciences of the United States of America. 109 (12), 690-697 (2012).
  28. Ott, W., Jobst, M. A., Schoeler, C., Gaub, H. E., Nash, M. A. Single-molecule force spectroscopy on polyproteins and receptor-ligand complexes: The current toolbox. Journal of Structural Biology. 197 (1), 3-12 (2017).
  29. Stahl, S. W., et al. Single-molecule dissection of the high-affinity cohesin-dockerin complex. Proceedings of the National Academy of Sciences of the United States of America. 109 (50), 20431-20436 (2012).
  30. Oh, Y. J., et al. Ultra-Sensitive and Label-Free Probing of Binding Affinity Using Recognition Imaging. Nano Letters. 19 (1), 612-617 (2019).
  31. Vera Andrés, M., Carrion-Vazquez, M. Direct Identification of Protein-Protein Interactions by Single-Molecule Force Spectroscopy. Angewandte Chemie International Edition. 55 (45), 13970-13973 (2016).
  32. Yu, H., Heenan, P. R., Edwards, D. T., Uyetake, L., Perkins, T. T. Quantifying the Initial Unfolding of Bacteriorhodopsin Reveals Retinal Stabilization. Angewandte Chemie International Edition. 58 (6), 1710-1713 (2019).
  33. Jobst, M. A., Schoeler, C., Malinowska, K., Nash, M. A. Investigating Receptor-ligand Systems of the Cellulosome with AFM-based Single-molecule Force Spectroscopy. Journal of Visualized Experiments. (82), e50950 (2013).
  34. Stetter, F. W. S., Kienle, S., Krysiak, S., Hugel, T. Investigating Single Molecule Adhesion by Atomic Force Spectroscopy. Journal of Visualized Experiments. (96), e52456 (2015).
  35. Nadler, H., et al. Deciphering the Mechanical Properties of Type III Secretion System EspA Protein by Single Molecule Force Spectroscopy. Langmuir. , (2018).
  36. Giganti, D., Yan, K., Badilla, C. L., Fernandez, J. M., Alegre-Cebollada, J. Disulfide isomerization reactions in titin immunoglobulin domains enable a mode of protein elasticity. Nature Communications. 9 (1), 185 (2018).
  37. Huang, W., et al. Maleimide-thiol adducts stabilized through stretching. Nature Chemistry. 11 (4), 310-319 (2019).
  38. Li, Y. R., et al. Single-Molecule Mechanics of Catechol-Iron Coordination Bonds. ACS Biomaterials Science, Engineering. 3 (6), 979-989 (2017).
  39. Popa, I., et al. Nanomechanics of HaloTag Tethers. Journal of the American Chemical Society. 135 (34), 12762-12771 (2013).
  40. Xue, Y., Li, X., Li, H., Zhang, W. Quantifying thiol-gold interactions towards the efficient strength control. Nature Communications. 5, 4348 (2014).
  41. Wiita, A. P., Ainavarapu, S. R. K., Huang, H. H., Fernandez, J. M. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proceedings of the National Academy of Sciences of the United States of America. 103 (19), 7222-7227 (2006).
  42. Pill, M. F., East, A. L. L., Marx, D., Beyer, M. K., Clausen-Schaumann, H. Mechanical Activation Drastically Accelerates Amide Bond Hydrolysis, Matching Enzyme Activity. Angewandte Chemie International Edition. 58 (29), 9787-9790 (2019).
  43. Conti, M., Falini, G., Samori, B. How strong is the coordination bond between a histidine tag and Ni-nitrilotriacetate? An experiment of mechanochemistry on single molecules. Angew. Chem. Int. Ed. 39 (1), 215-218 (2000).
  44. Beedle, A. E. M., Lezamiz, A., Stirnemann, G., Garcia-Manyes, S. The mechanochemistry of copper reports on the directionality of unfolding in model cupredoxin proteins. Nature Communications. 6, 7894 (2015).
  45. Li, H., Zheng, P. Single molecule force spectroscopy: a new tool for bioinorganic chemistry. Current Opinion in Chemical Biology. 43, 58-67 (2018).
  46. Zheng, P., Takayama, S. iJ., Mauk, A. G., Li, H. Hydrogen bond strength modulates the mechanical strength of ferric-thiolate bonds in rubredoxin. Journal of the American Chemical Society. 134 (9), 4124-4131 (2012).
  47. Lei, H., et al. Reversible Unfolding and Folding of the Metalloprotein Ferredoxin Revealed by Single-Molecule Atomic Force Microscopy. Journal of the American Chemical Society. 139 (4), 1538-1544 (2017).
  48. Yuan, G., et al. Multistep Protein Unfolding Scenarios from the Rupture of a Complex Metal Cluster Cd3S9. Scientific Reports. 9 (1), 10518 (2019).
  49. Zheng, P., Arantes, G. M., Field, M. J., Li, H. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule. Nature Communications. 6, 7569 (2015).
  50. Arantes, G. M., Bhattacharjee, A., Field, M. J. Homolytic cleavage of Fe-S bonds in rubredoxin under mechanical stress. Angewandte Chemie International Edition. 52 (31), 8144-8146 (2013).
  51. Blake, P. R., et al. Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR. Biochemistry. 30 (45), 10885-10895 (1991).
  52. Ott, W., Durner, E., Mediated Gaub, H. E. Enzyme-Mediated, Site-Specific Protein Coupling Strategies for Surface-Based Binding Assays. Angewandte Chemie International Edition. 57 (39), 12666-12669 (2018).
  53. Garg, S., Singaraju, G. S., Yengkhom, S., Rakshit, S. Tailored Polyproteins Using Sequential Staple and Cut. Bioconjugate Chemistry. 29 (5), 1714-1719 (2018).
  54. Veggiani, G., et al. Programmable Polyproteams Built Using Twin Peptide Superglues. Proceedings of the National Academy of Sciences of the United States of America. 113 (5), 1202-1207 (2016).
  55. Pelegri-O'Day, E. M., Maynard, H. D. Controlled Radical Polymerization as an Enabling Approach for the Next Generation of Protein-Polymer Conjugates. Accounts of Chemical Research. 49 (9), 1777-1785 (2016).
  56. Zheng, P., Cao, Y., Li, H. Facile method of constructing polyproteins for single-molecule force spectroscopy studies. Langmuir. 27 (10), 5713-5718 (2011).
  57. Zimmermann, J. L., Nicolaus, T., Neuert, G., Blank, K. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nature Protocols. 5 (6), 975-985 (2010).
  58. Becke, T. D., et al. Covalent Immobilization of Proteins for the Single Molecule Force Spectroscopy. Journal of Visualized Experiments. (138), e58167 (2018).
  59. Liu, H. P., Ta, D. T., Nash, M. A. Mechanical polyprotein assembly using sfp and sortase-mediated domain oligomerization for single-molecule studies. Small Methods. 2 (6), (2018).
  60. Zhang, Y., Park, K. Y., Suazo, K. F., Distefano, M. D. Recent progress in enzymatic protein labelling techniques and their applications. Chemical Society Reviews. 47 (24), 9106-9136 (2018).
  61. Luo, Q., Hou, C., Bai, Y., Wang, R., Liu, J. Protein Assembly: Versatile Approaches to Construct Highly Ordered Nanostructures. Chemical Reviews. 116 (22), 13571-13632 (2016).
  62. Valle-Orero, J., Rivas-Pardo, J. A., Popa, I. Multidomain proteins under force. Nanotechnology. 28 (17), 174003 (2017).

Tags

बायोकेमिस्ट्री इश्यू 156 सिंगल-डॉक्यूल फोर्स स्पेक्ट्रोस्कोपी बायो-कॉन्जुर्गेशन प्रोटीन इम्मोबिलाइजेशन एटॉमिक फोर्स स्पेक्ट्रोस्कोपी ओएएईपी1 प्रोटीन इंजीनियरिंग
OaAEP1-मध्यस्थता एंजाइमैटिक संश्लेषण और एकल अणु बल स्पेक्ट्रोस्कोपी के लिए बहुलक प्रोटीन के Immobilization
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Deng, Y., Zheng, B., Liu, Y., Shi,More

Deng, Y., Zheng, B., Liu, Y., Shi, S., Nie, J., Wu, T., Zheng, P. OaAEP1-Mediated Enzymatic Synthesis and Immobilization of Polymerized Protein for Single-Molecule Force Spectroscopy. J. Vis. Exp. (156), e60774, doi:10.3791/60774 (2020).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter