Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Developmental Biology

在蛋卵外 研究中研究鸟类内耳发育的方法

Published: June 16, 2022 doi: 10.3791/64172
* These authors contributed equally

Summary

雏鸡是一种具有成本效益、可及且广泛可用的模式生物,可用于各种研究。在这里,详细介绍了一系列协议,以了解鸟类内耳发育和再生的分子机制。

Abstract

内耳感知声音并使用耳蜗和前庭保持平衡。它通过使用称为毛细胞的专用机械感觉细胞类型来做到这一点。内耳的基础研究使人们深入了解了毛细胞的功能,以及失调如何导致听力损失和眩晕。在这项研究中,鼠标一直是杰出的模型系统。然而,像所有哺乳动物一样,小鼠已经失去了替代毛细胞的能力。因此,当试图了解恢复内耳功能的细胞疗法时,对其他脊椎动物物种的补充研究可以提供进一步的见解。鸟类的听觉上皮,基底(BP),是由机械感觉毛细胞(HC)组成的上皮片,由支持细胞(SC)插入。虽然基底和哺乳动物耳蜗的解剖结构不同,但内耳发育和听力的分子机制相似。这使得基底不仅成为比较研究的有用系统,而且有助于了解再生。在这里,我们描述了鸡内耳的解剖和操作技术。该技术显示了遗传和小分子抑制方法,为研究内耳发育的分子机制提供了有效的工具。在本文中, 我们讨论了使用 CRIPSR-Cas9缺失对基底进行遗传扰动的卵电穿孔技术,然后解剖基底。我们还展示了BP器官培养和培养基质的最佳使用,以观察上皮和毛细胞的发育。

Introduction

所有脊椎动物的内耳都来源于一个简单的上皮,称为耳基板12。这将产生所有必要的结构元素和细胞类型,以转导与听觉和平衡感知相关的机械感觉信息。毛细胞(HCs)是内耳的纤毛传感器,被支持细胞(SCs)包围。HC通过第八颅神经的神经元将信息传递给听觉后脑。这些也是从耳基板3产生的。声音的主要转导是在听觉HC的顶端表面通过机械敏感的毛束4实现的。这是通过修饰的基于肌动蛋白的突起(称为立体纤毛)介导的,这些突起以分级的阶梯模式排列5。此外,一种改良的初级纤毛,称为 kinocilium,组织毛束形成,并与最高的立体纤毛678 行相邻。立体纤毛的结构对于将源自声能的机械刺激转换为电神经信号的作用至关重要9。衰老、感染、耳声创伤或耳毒性休克对听觉HC的损害可导致部分或完全听力损失,在哺乳动物中,这是不可逆转的10

已经提出了可能修复这种损伤的细胞替代疗法1112。这项研究的方法是了解哺乳动物毛细胞的正常发育,并询问是否可以在内耳内可能存在的祖细胞样细胞中重新启动发育程序13。第二种方法是将目光投向哺乳动物之外,寻找非哺乳动物脊椎动物,其中听觉毛细胞发生强劲再生,例如鸟类1415。在鸟类中,毛细胞再生主要通过支持细胞去分化为祖细胞样状态发生,然后进行不对称有丝分裂以产生毛细胞和支持细胞16。此外,还观察到支持细胞的直接分化以产生毛细胞17

虽然鸟类听觉发育的机制确实与哺乳动物有显着相似之处,但存在差异18。雏鸡血压的HC和SC分化从胚胎第7天(E)开始就很明显,随着时间的推移变得更加明显。通过E12,可以看到图案良好且极化良好的基底(BP),通过E17可以看到发育良好的毛细胞19。这些时间点为分化、图案化和极性以及毛细胞成熟的机制提供了窗口。了解这些机制是保守的还是发散的很重要,因为它们提供了对机械感觉毛细胞起源的深层同源性的见解。

在这里,我们展示了在胚胎早期和晚期进行的一系列技术,以研究细胞过程,例如内耳器官发育过程中的增殖,命运规范,分化,模式化和维持。这补充了了解外植体培养中内耳发育的其他协议202122。我们首先讨论使用电穿孔将外源性DNA或RNA引入E3.5耳囊内的BP前体中。尽管遗传操作可以提供有价值的见解,但由此产生的表型可能是多效性的,因此是混淆的。在后期的内耳发育中尤其如此,其中细胞骨架重塑等基本过程在细胞分裂、组织形态发生和细胞特化中起着多种作用。我们提出了培养外植体的药理学抑制方案,其在控制剂量和治疗时间和持续时间方面具有优势,提供了发育机制的精确时空操作。

根据小抑制剂的治疗持续时间,可以使用不同的器官培养方法。在这里,我们展示了两种器官培养方法,可以深入了解上皮形态发生和细胞特化。一种使用胶原蛋白作为基质来培养耳蜗导管的 3D 培养方法可实现发育中的血压的稳健培养和实时可视化。为了了解立体纤毛的形成,我们提出了一种膜培养方法,使得上皮组织在刚性基质上培养,使肌动蛋白突起能够自由生长。这两种方法都允许下游处理,例如活细胞成像,免疫组织化学,扫描电子显微镜(SEM),细胞记录等。这些技术为有效使用雏鸡作为模型系统来理解和操纵鸟类听觉上皮的发育、成熟和再生提供了路线图。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

涉及受精鸡蛋和未孵化胚胎的采购,培养和使用的方案由卡纳塔克邦班加罗尔国家生物科学中心的机构动物伦理委员会批准。

1. 在 卵电穿孔中雏 鸡听觉前体

  1. 用于CRISPR/Cas9基因敲除的sgRNA设计和克隆
    1. 为了创建基因敲除,设计引导RNA破坏基因的外显子区域,最好靠近编码区域的5'端。
    2. 使用网络工具CRISPOR23选择潜在的向导RNA。将浏览器数据设置为 Gallus gallus ,将原间隔相邻基序 (PAM) 序列设置为 5'- NGG -3'。该程序从输入序列中确定向导RNA,并根据靶标和非靶向活性分配不同的分数。选择前四个指南进行进一步研究。
    3. 对于用于引导 (g)RNA 生产的模板特异性寡核苷酸的设计,从 gRNA 设计工具输出中删除 PAM 序列 (5′- NGG -3′)。这不是靶向所必需的,但包含Cas9切割识别序列。为每个潜在的 gRNA 合成两个两端具有 BsmBI 限制性位点的 HPLC 纯化互补寡核苷酸。
    4. 使用所选载体的tracrRNA支架在框架中克隆引导序列(此处使用pcU6_1sgRNA载体24)。
    5. 将 sgRNA 寡核苷酸以 100 μM 的浓度溶解在无 DNase/RNase 的水中。使用具有以下参数的热循环仪对两个义和反义寡核苷酸导轨进行退火:95°C3分钟,然后37°C15分钟,然后降至4°C。
    6. 使用25中所述的标准分子生物学技术,设置退火寡核苷酸的限制性酶切,并用BsmBI酶pcU6_1sgRNA克隆载体过夜。使用凝胶纯化的线性BsmBI酶解pcU6_1sgRNA载体和酶解的sgRNA寡核苷酸建立连接。转化为DH5-α感受态细胞并序列确认获得的克隆。
  2. 鸡蛋处理和窗口化
    1. 采购新鲜产下的鸡蛋,并用70%乙醇擦拭以防止污染。在37-38°C,湿度为45%的条件下孵育3.5-4天。
    2. 孵化后,在打开前将鸡蛋侧放至少 5 分钟。这允许胚胎重新定位到蛋黄的顶部。用镊子在鸡蛋的顶部和钝端打小孔,以便 21G 针头可以穿过。
    3. 为防止在开窗过程中损坏,请去除白蛋白以使胚胎远离外壳。为此,请使用 5 mL 注射器和 21G 针头小心地从鸡蛋钝端的孔中抽出 2 mL 白蛋白。使用透明胶带覆盖钝端的孔。
    4. 要制作鸡蛋窗口,请在蛋壳顶部贴上透明胶带。用弹簧弓剪刀切开一个长约2厘米,宽约1.5厘米的窗户,露出胚胎。用镊子打开覆盖在胚胎上的绒毛膜,允许进入胚胎。
  3. 微量注射质粒
    1. 对于基因敲除实验,准备两种溶液:含有SpCas9蛋白和引导质粒-pcU6_1sgRNA的敲低混合物,以及T2K-eGFP(这是驱动被Tol2转座子位点包围的GFP盒的小鸡β-肌动蛋白启动子启动子)的示踪质粒混合物以及T2TP(在Tol2构建体2627中克隆的Tol2转座酶)。示踪剂用于跟踪电穿孔效率。
    2. 电化多个质粒时,确保DNA的最终浓度至少为4μg/μL。 将三种构建体,引导质粒 - pcU6_1sgRNA,T2K-eGFP和T2TP,以1:1:1的比例与1μgSpCas9蛋白,30%蔗糖和0.1%快绿染料混合,最终体积为10μL。
    3. 使用垂直移液器拉拔器从标准玻璃毛细管(长度 3 英寸,外径 1.0 毫米)拉出用于显微注射的针头。拉动后使用细镊子折断毛细管尖端,以获得约50μm的尖端直径和锥形末端。
    4. 将胚胎放在左侧的E3.5处,头部朝右。这样,只有正确的耳囊泡才能进行显微注射。将敲低混合物微注射到耳囊中。注射约 200 nL 体积的 DNA 溶液混合物以填充耳囊泡。
    5. 使用 T7 核酸内切酶测定法确定引导效率28.
  4. 电穿孔
    1. 在电穿孔之前,在胚胎顶部添加几滴0.719%盐水,以降低电阻并防止胚胎过热。
    2. 取出白蛋白时,将正极穿过鸡蛋钝侧的孔。操纵电极,使其位于蛋黄下方。将负极放在填充的耳囊上。
    3. 使用电穿孔将质粒转染到胚胎细胞中。使用方波发生器,施加五个脉冲,每个脉冲持续时间为25 V和100 ms,间隔50 ms。根据单个电穿孔设置凭经验确定条件。
    4. 电穿孔后通过添加几滴0.719%盐水来水合胚胎。要清除电极表面的变性白蛋白,请用蒸馏水彻底冲洗。用透明胶带重新密封种蛋,并在37-38°C下返回加湿的培养箱中进一步孵化。
      注意:胚胎可以在电穿孔后培养直到孵化,但是活力急剧降低。

2.基底夹层

  1. 使用70%乙醇对手术台、显微镜载物台和周围区域进行消毒。加热或酒精消毒显微切割设备,包括最小弹簧弓剪刀、微刮匙和两对细镊子。
  2. 准备以下解剖板:带有黑色硅基的玻璃培养皿,90毫米塑料培养皿和60毫米培养皿。冷却磷酸盐缓冲盐水(PBS)或汉克斯平衡盐溶液(HBSS)进行解剖。
  3. 轻轻地将鸡蛋打入 90 毫米培养皿中。识别雏鸡的外耳。用剪刀将颈部切到下颌水平下方,将胚胎斩首。将头部转移到装有冰冷PBS的60毫米培养皿中。
  4. 将胚胎定向,喙的顶部朝向实验者,并使用#5镊子之一握住喙。用第二个#5镊子挖出眼睛。从喙部到尾部,沿中线切割头骨。挖出大脑。
  5. 添加更多冰冷的PBS或HBSS,并找到两个闪亮的结构,靠近耳廓的水平。这些是耳蜗管末端的耳石,靠近中线。
  6. 大致切在两个拉根之间,并远高于和低于该区域,以隔离两个内耳。在倾斜的照明下,可视化内耳的轮廓。去除外来组织和前庭。
  7. 将分离的耳蜗转移到带有冰冷PBS的黑色硅胶底板上。使用#5镊子,剥去软骨耳蜗囊以获得耳蜗管。找到耳蜗管的起伏层(被盖),并使用#55镊子取出以暴露血压。 使用#55镊子,去除盖膜以暴露HC和SC。

3. 基底外植体的培养

  1. BP的膜培养
    1. 取一个六孔组织培养板,每孔布置一个培养膜插入物。
    2. 将解剖的基底(外植体)收集在带有 1x HBSS 缓冲液的 200 μL 移液管中,并将其转移到膜上。为防止组织粘附在移液器壁上,请在吸出组织之前抽取一些培养基。
    3. 定向外植体,使基底朝上,以便从顶部29可以看到毛发和支持细胞。一旦外植体定位,从培养膜表面缓慢吸出HBSS缓冲液。在此过程中,外植体将附着在培养膜上。
    4. 在膜插入物和孔壁之间加入 1.2 mL Dulbecco 改良的 Eagle 培养基 (DMEM) 培养基,以填充六孔板的孔。在单个 30 mm 培养膜上最多可培养六个外植体。
  2. 耳蜗管的胶原培养
    1. 通过在组织培养罩中加入 400 μL 3 mg/mL 大鼠尾部胶原蛋白、50 μL 10x DMEM、30 μL 7.5% NaHCO3 和 5 μL HEPES 来制备胶原蛋白混合物。
    2. 取一个四孔板,向每个孔中加入三滴胶原蛋白混合物。将解剖的耳蜗管转移到每个胶原蛋白滴上。将板在37°C,5%CO2 下孵育10分钟以固化胶原蛋白基质。
  3. 培养物的小分子处理
    1. 单独使用药理调节剂或其溶剂(用作对照)制备培养基(DMEM,N-2补充剂,青霉素)。用补充有抑制剂的 700 μL 培养基替换培养基。在37°C,5%CO2的培养箱中培养外植体。
    2. 每天更换50%的培养基。在适当的孵育时间后,取出培养基并使用外植体进行下游测定。

4. 成像和分析

  1. 免疫荧光分析
    1. 从孔中取出培养基,并用1x HBSS洗涤外植体两次。使用移液管向孔中加入 1 mL 4% 多聚甲醛 (PFA),并在室温下孵育 20 分钟。
    2. 去除PFA,并在室温下用1x PBS洗涤外植体三次。为了从培养膜中收集外植体,使用小弹簧弓剪刀在包含组织片的膜周围做一个小切口,并使用镊子将组织与膜一起转移到 48 孔培养板上。
      注意:如果组织在固定后漂浮,则用200μL移液器吸出并将其转移到48孔板中进行进一步处理。避免用力将组织从膜上分离。
    3. 对于胶原液滴培养,使用镊子将整个胶原液滴转移到硅板上。加入 200 μL 的 1x PBS 并在镊子的帮助下去除胶原蛋白,然后将组织转移到 48 孔培养板中。
    4. 在室温下用 1 mL 补充有 0.3% 吐温-20 (PBST) 的 1x PBS 透化外植体 30 分钟。将外植体与 200 μL 封闭缓冲液(10% 山羊血清 + 1% 牛血清白蛋白在 PBST 中)在室温下孵育 1 小时。
    5. 将外植体与 200 μL 一抗溶液(1:300,封闭缓冲液)在 4 °C 下孵育过夜。 取出一抗溶液,用PBST彻底洗涤外植体5 x 20分钟。
    6. 将外植体与 200 μL 鬼笔环肽和二抗溶液(在封闭缓冲液中)在室温下在黑暗中孵育 1 小时。除去鬼笔环肽和二抗溶液,并用PBST彻底洗涤外植体5 x 20分钟。
      注意:必须为每个单独的成像应用确定二抗浓度和洗涤长度。对于使用超分辨率显微镜的成像,我们通常将二抗浓度从1:500增加到1:200,并将鬼笔环肽的浓度从1:400增加到1:200。
    7. 将外植体与DAPI溶液(PBST中的1:1000)在室温下孵育15分钟。取出DAPI溶液并用PBST洗涤外植体3 x 5分钟。
    8. 使用封片剂将外植体安装在载玻片上,血压朝上(靠在盖玻片上)。对于共聚焦成像,请使用抗淬灭封片剂。让封片剂在室温下在黑暗中干燥过夜。直接成像或将载玻片储存在4°C直至成像。
  2. 用于 SEM 分析的耳托固定
    1. 新鲜准备所有溶液并根据当地安全指南进行处理。将膜培养的外植体(来自步骤4.1.4)固定在0.1M二甲胂酸钠缓冲液(pH 7.3)中的2.5%戊二醛中,并用3mM CaCl2固定。在4°C下固定24至72小时,每24小时更换一次固定剂。
    2. 取出固定剂,并在室温下用0.1M二甲胂酸钠3 x 5分钟洗涤组织。在室温下用1%OsO 4(使用0.1M二甲胂酸钠缓冲液从4%OsO 4储备液稀释)进行二次固定1小时。执行此步骤和后续步骤,直到在通风橱中脱水。
    3. 在室温下用0.1M二甲胂酸钠缓冲液冲洗3 x 5分钟。然后在室温下用双蒸或超纯水冲洗3 x 5分钟。
    4. 在超纯水中制备0.5%的硫代碳酰肼(TCH)溶液。在75°C搅拌10分钟,并在冷却至室温时过滤溶液。
      注意:TCH非常危险。使用必须得到当地安全委员会的批准,并且在处理时必须小心。
    5. 从样品中除去超纯水,逐滴添加0.5%TCH。如果溶液变成棕色,请停止并用超纯水冲洗样品,然后小心地加入0.5%TCH溶液。溶液澄清后,用0.5%TCH代替。在室温下孵育20分钟3031
    6. 在室温下用超纯水冲洗样品3 x 5分钟。再重复步骤4.2.2、4.2.3和4.2.5两次,最后以OsO4 孵育结束,然后冲洗。
    7. 将乙醇系列样品脱水至100%无水乙醇(EtOH)。首先在 25% ETOH 中孵育 10 分钟,然后用 50% ETOH 孵育 10 分钟,在 75% 乙醚中孵育 10 分钟,在 95% 乙二醇中孵育 10 分钟,然后在 100% ETOH 中孵育总共 3 倍,每次 10 分钟。
    8. 使用液体CO2进行临界点干燥。立即用双面碳胶带将样品安装在SEM短管上。继续溅射涂层以提供 5-10 nm 的涂层。如果不立即成像,请将样品储存在真空下的干燥器中。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

在电穿孔设置中,电极定位可以在转染领域发挥作用。正极放置在蛋黄下方,负极放置在胚胎上方(图1A)。这导致大部分内耳和两个前庭器官(图1B)和听基底(图1C,D)的GFP表达较高,证实了转染。

在评估CRISPR敲低的表型时,我们设计了引导RNA到毛细胞转录因子Atonal homolog1(Atoh1)。Atoh1的小鼠突变体无法形成毛细胞32;在电穿孔Atoh1引导RNA并孵育至E10后,我们发现与对照空质粒对照相比,HC发育受损(图2)。虽然电穿孔是马赛克的(图2E,F),但对照电穿孔细胞能够形成毛细胞。在Atoh1 gRNA电穿孔样品中,GFP阳性细胞从未显示HC发育的标志物(图2B)。

血压的器官培养提供了进入组织的途径。3D 基质中的培养物(例如胶原蛋白)可提供长达 5 天的出色组织形态保存。在这些培养条件下维持HC和SC的组织(图3)。

膜上的器官培养更适用于立体纤毛成像。这种培养物可以培养长达 5 天,同时保持发束完整性。这可以通过尖端链接蛋白原钙粘蛋白1533 (Pcdh15)的定位来看到(图4)。为了询问毛束的发展,需要更高分辨率的成像,并且使用超分辨率显微镜(图4D)或扫描电子显微镜(图4E)的方法提供了更完整的信息。

Figure 1
图1.在E4处的卵电穿孔后,GFP表达在E10处可见。 (A)示意图说明在E4处的卵显微注射和雏鸡耳泡中的电穿孔。进样移液器填充有 Tol2-eGFP (T2K-eGFP) 和 Tol2-转座酶 (T2TP) 质粒,以及用于可视化的快速绿色染料。(B)在体视显微镜上使用0.63倍空气物镜在E10处电穿孔内耳的图像。左内耳是内部控制。红色箭头表示右内耳耳蜗管中的GFP表达,红色星号表示前庭器官中的GFP表达;比例尺为 2 cm。 (C) 使用0.5 NA的20倍空气物镜对右耳蜗管横截面的宽场荧光图像。GFP表达主要局限于感觉上皮;比例尺为 10 μm。 (D) 使用用与 Alexa 647 荧光团偶联的鬼笔环肽染色的 0.5 NA 的 10 倍空气物镜成像的整个基底的共聚焦图像。在血压神经侧从近端到远端观察到GFP表达;比例尺为 100 μm。 请点击此处查看此图的大图。

Figure 2
图2.CRISPR/Cas9介导的Atoh1基因敲除通过卵电穿孔 导致 毛细胞(HCs)丢失。 Atoh1基因引导质粒pcU6_1-Atoh1sgRNA和示踪质粒Tol2-eGFP(T2K-eGFP)和Tol2-转座酶(T2TP)与SpCas9蛋白在E4处的鸡耳囊中显微注射和电穿孔。所有图像均来自带有10μm比例尺的雏鸡E10基底,使用激光共聚焦显微镜用1.42 NA的60倍油浸物镜捕获。为所有图像提供放大的插图。(A,B,C,D)左侧图包含带有毛细胞 (HC) 的 BP,用空pcU6_1sgRNA和 T2K-eGFP 电穿孔,以及带有 SpCas9 蛋白的 T2TP。(E,F,G,H)右侧图包含HC丢失的BP,用Atoh1向导(pcU6_1-Atoh1sgRNA)和T2K-eGFP电穿孔,以及带有SpCas9蛋白的T2TP。(一、五)显示基底中毛细胞 (HC) 的合并图像。这些对肌球蛋白7a(蓝色)具有免疫反应性;用与Alexa 647(红色)偶联的鬼笔环肽染色的F-肌动蛋白;使用抗GFP抗体(绿色)检测Tol2-eGFP质粒的GFP表达。当与空pcU6_1sgRNA(D)和pcU6_1-Atoh1sgRNA(H)的治疗进行比较时,肌球蛋白7a免疫反应性明显地表明HC的损失。两种治疗的F-肌动蛋白成像突出显示了HC(B,F)的发束。(中,七)T2K-eGFP和T2TP用于测量转染位置和效率。 请点击此处查看此图的大图。

Figure 3
图3.3D胶原液滴培养中耳蜗管的器官培养维持感觉上皮的组织。 将E10的BP在3D胶原液滴培养物中培养1天,并使用激光共聚焦显微镜使用60倍油浸物镜1.42 NA成像。 (A ) 在胶原液滴中培养 1 天的 E10 全血压图像,并用针对毛细胞抗原 (HCA) 的抗体染色34。比例尺为 100 μm。 ( B ) 合并图像显示用 (C) 鬼笔环肽(绿色)和 (D) HCA 蓝色 染色的血压远端感觉上皮的保存组织;比例尺为 10 μm。 请点击此处查看此图的大图。

Figure 4
图4.电子和光学显微镜下的基底的立体睫状束。 将0.1%二甲基亚砜(DMSO)处理的BP在E10处移位,并在膜培养插入物上体 培养3天(DIV)。 (A) 使用激光扫描共聚焦显微镜使用1.42 NA的60倍油浸物镜对外植体进行成像。合并的图像显示了原钙粘蛋白 15 (Pcdh15) 和由鬼笔环肽与 Alexa 488(绿色)结合标记的立体纤毛的表达。显示了F-肌动蛋白 (B) 和Pcdh15 (C) 的单通道图像。比例尺为 10 μm。 (D) 用鬼笔环肽与 Alexa 488 染色为绿色的立体纤毛染色的超分辨率图像。图像是在激光扫描共聚焦显微镜的Airyscan模式下使用1.42 NA的63倍油浸物镜获得的。比例尺为 5 μm。 ( E ) 使用 7 kV 电子高压 (EHT) 电压在 16340 倍放大倍率下拍摄 SEM 图像。红色星号标记基诺西莉亚和红色楔形标记立体纤毛。亮度和对比度被调整为自动,并使用FIJI锐化图像。比例尺为 1 μm。 请点击此处查看此图的大图。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

雏鸡是实验室可以用来研究内耳的模式生物的一种经济高效且方便的补充。这里描述的方法在我们的实验室中经常使用,并补充了正在进行的哺乳动物内耳研究。 在卵子中 ,电穿孔用于将遗传操作引入鸡基因组。电穿孔还可用于引入编码靶向特定细胞器或亚细胞结构的荧光蛋白的构建体3536。虽然这是一个简单的程序,但在 卵子中 操纵胚胎确实会影响活力。为了有效地电穿孔,鸡蛋应新鲜采购(产卵后不久)。在储存超过 5 天的卵子中经常观察到死亡率上升和/或异常发育。使用无菌技术,确保卵子被正确密封,使其不会失去水分,并尽量减少对胚胎进行的操作,以提高活力。

我们发现,将耳囊靶向E3.5至E4可以减少胚胎面临的创伤,并且使用精心定位的电极可以很好地靶向BP的感觉前体。然而,到了这个阶段,听前庭神经节的前体已经从内耳迁移3738。为了靶向这些细胞,必须选择耳囊肿电穿孔的早期时间点,并为相应的活力降低做出调整。需要注意的进一步注意事项是电穿孔胚胎中嵌合体的可能性。并非所有细胞都占据了所有的质粒,因此嵌合体会混淆解释。使用示踪质粒有助于数据解释,并对可能的镶嵌效应提供一些控制。使用多次重复、仔细分析和统计方法将有助于评估镶嵌表型。另一种方法是使用转基因鹌鹑39。目前,这些数字是有限的,并且并不总是可供许多实验室使用。然而,可用性将会增加,组成型表达亚细胞靶向荧光蛋白的鹌鹑胚胎是成像实验的一个有吸引力的命题。

在这种方法中,我们通过非同源末端连接(NHEJ)电穿孔蛋白质和DNA进行CRISPR介导的敲低24。CRISPR / Cas9通过同源定向修复(HDR)介导的融合构建体的生成在这种特定范式中仍然效率低下(Singh等人,未发表的观察结果)。电穿孔方法可以适用于其他类型的DNA构建体(这些可能是编码融合蛋白的构建体),以及RNA和蛋白质。应该注意的是,在发育(和细胞分裂)过程中,基于DNA的表达构建体将被稀释,除非载体包含介导外源DNA插入这些细胞基因组的位点(例如,Tol2或PiggyBac)。这允许更稳定地表达构造。

电穿孔后,胚胎通常在 卵中 培养至E10阶段,以进行毛细胞分化和发育研究。但如果需要,可以在卵中继续培养直到 孵化;然而,随着孵育时间的增加,生存能力也相应下降。为了避免这种情况,卵 电穿孔可以与血压解剖相结合,然后进行长期 的卵外 培养。在 3D 基质中培养外植体可以很好地保存组织形态。该方法可用于研究组织图案、极性和分化的变化。BP在膜上的培养允许组织27的顶端侧的可视化,特别是立体纤毛的高分辨率成像。

在某些情况下,可以通过使用不同的基于小分子的治疗方法来克服基因改造的局限性。药理活性化合物可作为信号通路或细胞生物过程的抑制剂或激动剂。它们的应用在剖析时间要求时特别有用。然而,确切的递送方式和最佳浓度确实需要根据经验确定,因为在某些情况下,在细胞系中进行的标准化与组织中所需的剂量不相上下。胚胎内的分娩可能存在问题,所需的数量加上对其他器官系统的影响可能会显着损害生存能力。现成的替代方案是器官培养方法20,2122。然而,确切的培养方法确实取决于预期的研究和分析类型。虽然胶原培养保留了血压的组织形态,但膜培养更适合研究HC的顶端毛束。组织可以简单地放置在膜的顶部,以使用扫描电子显微镜或超分辨率显微镜可视化顶端表面。解剖器官培养确实需要良好的实践。这些措施包括保持无菌工作空间和使用锋利的器械。这种显微切割工具非常敏感,我们发现使用硅培养皿对于保持显微外科工具的完整性很重要。

总之,这些技术代表了进一步了解内耳发育的宝贵方法。雏鸡胚胎提供的比较生物学和再生见解可以为毛细胞发育和功能提供重要的见解。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有竞争利益需要披露。

Acknowledgments

我们非常感谢NCBS,TIFR,Infosys-TIFR前沿研究基金,DST-SERB和皇家国家聋人研究所的支持。我们要感谢班加罗尔赫萨拉加塔的中央家禽发展组织和培训学院。我们感谢CIFF和EM设施和NCBS的实验室支持。我们感谢Yoshiko Takahashi和Koichi Kawakami的Tol2-eGFP和T2TP构建体,以及Guy Richardson的HCA和G19 Pcdh15抗体。我们感谢 Earlab 成员对该协议的持续支持和宝贵反馈。

Materials

Name Company Catalog Number Comments
Alexa Fluor 488 Phalloidin Thermo Fisher Scientific A12379
Alexa Fluor 647 Phalloidin Thermo Fisher Scientific A22287
Alt-R S.p. HiFi Cas9 Nuclease V3 Integrated DNA Technologies 1081061 High fidelity Cas9 protein
Anti-GFP antibody Abcam ab290 Rabbit polyclonal to GFP
Bovine Serum Albumin Sigma-Aldrich A9647
Calcium Chloride Dihydrate Thermo Fisher Scientific Q12135
Collagen I, rat tail Thermo Fisher Scientific A1048301
Critical Point Dryer Leica EM CPD300 Leica
CUY-21 Electroporator Nepagene
Dimethyl sulfoxide (DMSO) Sigma-Aldrich D8418
DM5000B Widefield Microscope Leica
DMEM, high glucose, GlutaMAX Supplement, pyruvate Thermo Fisher Scientific 10569010
Dumont #5 Forceps Fine Science Tools 11251-20
Dumont #55 Forceps Fine Science Tools 11255-20
Fast Green FCF Sigma-Aldrich F7252
Fluoroshield Sigma-Aldrich F6182
FLUOVIEW 3000 Laser Scanning Microscope Olympus
Glutaraldehyde (25 %) Sigma-Aldrich 340855
Goat anti-Mouse IgG Secondary Antibody, Alexa Fluor 488 Thermo Fisher Scientific A-11001
Goat anti-Mouse IgG Secondary Antibody, Alexa Fluor 594 Thermo Fisher Scientific A-11032
Goat anti-Rabbit IgG Secondary Antibody, Alexa Fluor 488 Thermo Fisher Scientific A-11008
Goat Serum Sterile filtered HiMedia RM10701 Heat inactivated
Hanks' Balanced Salt Solution (HBSS) Thermo Fisher Scientific 14025092
LSM980 Airyscan Microscope Zeiss
Millicell Cell Culture Insert, 30 mm, hydrophilic PTFE, 0.4 µm Sigma-Aldrich PICM03050
MVX10 Stereo Microscope Olympus
MYO7A antibody DSHB 138-1 Mouse monoclonal to Unconventional myosin-VIIa
MZ16 Dissecting microscope Leica
N-2 Supplement (100X) Thermo Fisher Scientific 17502048
Noyes Scissors, 14cm (5.5'') World Precision Instruments 501237
Osmium tetroxide (4%) Sigma-Aldrich 75632
Paraformaldehyde Sigma-Aldrich 158127
PC-10 Puller Narishige
pcU6_1sgRNA Addgene 92395 Mini vector with modified chicken U6 promoter
Penicillin G sodium salt Sigma-Aldrich P3032
Phosphate Buffered Saline (PBS) Thermo Fisher Scientific 10010023
ProLong Gold Antifade Mountant Thermo Fisher Scientific P36934
SMZ1500 Dissecting microscope Nikon
Sodium Cacodylate Buffer, 0.2M Electron Microscopy Sciences 11652
Sodium chloride HiMedia GRM853
Sputtre Coater K550X Emitech
Standard Glass Capillaries 3 in, OD 1.0 mm, No Filament World Precision Instruments 1B100-3
Sucrose Sigma-Aldrich 84097
The MERLIN Compact VP Zeiss
Thiocarbohydrazide Alfa Aesar L01205
TWEEN 20 Sigma-Aldrich P1379

DOWNLOAD MATERIALS LIST

References

  1. Sai, X., Ladher, R. K. Early steps in inner ear development: induction and morphogenesis of the otic placode. Frontiers in Pharmacology. 6, 19 (2015).
  2. Groves, A. K., Fekete, D. M. Shaping sound in space: the regulation of inner ear patterning. Development. 139 (2), 245-257 (2012).
  3. Driver, E. C., Kelley, M. W. Development of the cochlea. Development. 147 (12), (2020).
  4. Richardson, G. P., Petit, C. Hair-bundle links: genetics as the gateway to function. Cold Spring Harbor Perspectives in Medicine. 9 (12), 033142 (2019).
  5. Tilney, L. G., Cotanche, D. A., Tilney, M. S. Actin filaments, stereocilia and hair cells of the bird cochlea. VI. How the number and arrangement of stereocilia are determined. Development. 116 (1), 213-226 (1992).
  6. Jones, C., et al. Ciliary proteins link basal body polarization to planar cell polarity regulation. Nature Genetics. 40 (1), 69-77 (2008).
  7. Sipe, C. W., Lu, X. Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms. Development. 138 (16), 3441-3449 (2011).
  8. May-Simera, H. L., Kelley, M. W. Cilia, Wnt signaling, and the cytoskeleton. Cilia. 1 (1), 1 (2012).
  9. Ebrahim, S., et al. Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like. Nature Communications. 7, 10833 (2016).
  10. Corwin, J. T., Cotanche, D. A. Regeneration of sensory hair cells after acoustic trauma. Science. 240 (4860), 1772-1774 (1988).
  11. Collado, M. S., Burns, J. C., Hu, Z., Corwin, J. T. Recent advances in hair cell regeneration research. Current Opinion in Otolaryngology & Head and Neck Surgery. 16 (5), 465-471 (2008).
  12. Edge, A. S., Chen, Z. Y. Hair cell regeneration. Current Opinion in Neurobiology. 18 (4), 377-382 (2008).
  13. Atkinson, P. J., Huarcaya Najarro, E., Sayyid, Z. N., Cheng, A. G. Sensory hair cell development and regeneration: similarities and differences. Development. 142 (9), 1561-1571 (2015).
  14. Brignull, H. R., Raible, D. W., Stone, J. S. Feathers and fins: non-mammalian models for hair cell regeneration. Brain Research. 1277, 12-23 (2009).
  15. Rubel, E. W., Furrer, S. A., Stone, J. S. A brief history of hair cell regeneration research and speculations on the future. Hearing Research. 297, 42-51 (2013).
  16. Stone, J. S., Cotanche, D. A. Hair cell regeneration in the avian auditory epithelium. The International Journal of Developmental Biology. 51 (6-7), 633-647 (2007).
  17. Roberson, D. W., Alosi, J. A., Cotanche, D. A. Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. Journal of Neuroscience Research. 78 (4), 461-471 (2004).
  18. Fritzsch, B., Beisel, K. W., Pauley, S., Soukup, G. Molecular evolution of the vertebrate mechanosensory cell and ear. The International Journal of Developmental Biology. 51 (6-7), 663-678 (2007).
  19. Tilney, L. G., DeRosier, D. J. Actin filaments, stereocilia, and hair cells of the bird cochlea. IV. How the actin filaments become organized in developing stereocilia and in the cuticular plate. Developmental Biology. 116 (1), 119-129 (1986).
  20. Oesterle, E. C., Tsue, T. T., Reh, T. A., Rubel, E. W. Hair-cell regeneration in organ cultures of the postnatal chicken inner ear. Hearing Research. 70 (1), 85-108 (1993).
  21. Honda, A., Freeman, S. D., Sai, X., Ladher, R. K., O'Neill, P. From placode to labyrinth: culture of the chicken inner ear. Methods. 66 (3), 447-453 (2014).
  22. Matsunaga, M., et al. Initiation of supporting cell activation for hair cell regeneration in the avian auditory epithelium: an explant culture model. Frontiers in Cellular Neuroscience. 14, 583994 (2020).
  23. Concordet, J. P., Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research. 46, 242-245 (2018).
  24. Gandhi, S., Piacentino, M. L., Vieceli, F. M., Bronner, M. E. Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo. Developmental Biology. 432 (1), 86-97 (2017).
  25. Green, M. R., Sambrook, J. Cloning and transformation with plasmid vectors. Cold Spring Harbor Protocols. 2021 (11), (2021).
  26. Sato, Y., et al. Stable integration and conditional expression of electroporated transgenes in chicken embryos. Developmental Biology. 305 (2), 616-624 (2007).
  27. Takahashi, Y., Watanabe, T., Nakagawa, S., Kawakami, K., Sato, Y. Transposon-mediated stable integration and tetracycline-inducible expression of electroporated transgenes in chicken embryos. Methods in Cell Biology. 87, 271-280 (2008).
  28. Mashal, R. D., Koontz, J., Sklar, J. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nature Genetics. 9 (2), 177-183 (1995).
  29. Ogier, J. M., Burt, R. A., Drury, H. R., Lim, R., Nayagam, B. A. Organotypic culture of neonatal murine inner ear explants. Frontiers in Cellular Neuroscience. 13, 170 (2019).
  30. Davies, S., Forge, A. Preparation of the mammalian organ of Corti for scanning electron microscopy. Journal of Microscopy. 147, 89-101 (1987).
  31. Parker, A., Chessum, L., Mburu, P., Sanderson, J., Bowl, M. R. Light and electron microscopy methods for examination of cochlear morphology in mouse models of deafness. Current Protocols in Mouse Biology. 6 (3), 272-306 (2016).
  32. Bermingham, N. A., et al. Math1: an essential gene for the generation of inner ear hair cells. Science. 284 (5421), 1837-1841 (1999).
  33. Goodyear, R. J., Forge, A., Legan, P. K., Richardson, G. P. Asymmetric distribution of cadherin 23 and protocadherin 15 in the kinocilial links of avian sensory hair cells. The Journal of Comparative Neurology. 518 (21), 4288-4297 (2010).
  34. Bartolami, S., Goodyear, R., Richardson, G. Appearance and distribution of the 275 kD hair-cell antigen during development of the avian inner ear. The Journal of Comparative Neurology. 314 (4), 777-788 (1991).
  35. Funahashi, J., Nakamura, H. Electroporation in avian embryos. Methods in Molecular Biology. 461, 377-382 (2008).
  36. Nakamura, H., Funahashi, J. Electroporation: past, present and future. Development, Growth & Differentiation. 55 (1), 15-19 (2013).
  37. Olaya-Sanchez, D., et al. Fgf3 and Fgf16 expression patterns define spatial and temporal domains in the developing chick inner ear. Brain Structure & Function. 222 (1), 131-149 (2017).
  38. Jones, J. M., Warchol, M. E. Expression of the Gata3 transcription factor in the acoustic ganglion of the developing avian inner ear. The Journal of Comparative Neurology. 516 (6), 507-518 (2009).
  39. Serralbo, O., et al. Transgenesis and web resources in quail. Elife. 9, 56312 (2020).

Tags

发育生物学,第184期,
<em>在蛋</em> 和 <em>卵外</em> 研究中研究鸟类内耳发育的方法
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Singh, N., Prakash, A.,More

Singh, N., Prakash, A., Chakravarthy, S. R., Kaushik, R., Ladher, R. K. In Ovo and Ex Ovo Methods to Study Avian Inner Ear Development. J. Vis. Exp. (184), e64172, doi:10.3791/64172 (2022).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter