Summary

调查气管中的应力松弛和失效反应

Published: October 18, 2022
doi:

Summary

本方案确定了猪气管的拉伸应力松弛和破坏特性。这些方法的结果可以帮助提高对气管粘弹性和衰竭阈值的理解,并有助于提高肺系统计算模型的能力。

Abstract

气管的生物力学特性直接影响气流,并有助于呼吸系统的生物功能。了解这些性质对于了解该组织中的损伤机制至关重要。该协议描述了一种实验方法,用于研究猪气管的应力松弛行为,该气管被预先拉伸至0%或10%应变300秒,然后进行机械拉伸载荷直至失效。本研究详细介绍了猪气管生物力学测试的实验设计、数据采集、分析和初步结果。使用该协议中提供的详细步骤和数据分析MATLAB代码,未来的研究可以研究气管组织的时间依赖性粘弹性行为,这对于了解其在生理,病理和创伤条件下的生物力学反应至关重要。此外,对气管生物力学行为的深入研究将极大地有助于改善相关医疗设备的设计,例如在手术过程中广泛使用的气管内植入物。

Introduction

尽管其在肺部疾病中起着关键作用,但最大的气道结构气管对其粘弹性的研究有限1.深入了解气管的时间依赖性粘弹性行为对于肺力学研究至关重要,因为了解气道特异性材料特性可以帮助推进肺病的损伤预防,诊断和临床干预的科学,肺病是美国第三大死亡原因234

现有的组织表征研究已经报道了气管5678的刚度特性。尽管时间依赖性机械反应在组织重塑中很重要,但对时间依赖性机械反应的研究很少,病理学910也改变了这种反应。此外,缺乏时间依赖性响应数据也限制了目前诉诸于使用通用本构定律的肺力学计算模型的预测能力。需要通过进行应力松弛研究来解决这一差距,这些应力松弛研究可以提供所需的材料特性,为气管的生物物理研究提供信息。目前的研究提供了测试方法,数据采集和数据分析的详细信息,以研究猪气管的压力松弛行为。

Protocol

所描述的所有方法都得到了德雷克塞尔大学机构动物护理和使用委员会(IACUC)的批准。所有尸体动物都是从位于美国宾夕法尼亚州的美国农业部(USDA)批准的农场获得的。本研究使用了一头雄性约克郡猪(3周龄)的尸体。 1. 组织采集 从批准的农场获取猪的尸体,并在安乐死后2小时内进行实验。将尸体放在冰上,直到组织收获完成,以确保新鲜的组织?…

Representative Results

图1显示了夹紧部位附近的失效组织和夹钳内组织的存在,确认在拉伸测试期间没有打滑。图2显示了在被测样品的拉伸测试期间观察到的各种失效部位,包括顶部或底部夹紧部位或沿组织长度。数据分析结果总结在图3-4和表1-2中。气管样品在轴向或圆周预拉伸至10%应?…

Discussion

很少有研究报告气管2123的应力松弛特性。需要研究来进一步加强我们对气管组织的时间依赖性反应的理解。本研究报告提供了进行此类调查的详细步骤。然而,为了确保可靠的测试,必须确保方案内的以下关键步骤:(1)适当的组织水合作用,(2)圆周和纵向样品中的相似组织类型(软骨环和肌肉的数量)分布,(3)在没有预拉伸的情况下夹紧样?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本出版物中报道的研究得到了美国国立卫生研究院尤尼斯·肯尼迪·施莱佛国家儿童健康和人类发展研究所的支持,奖项编号为R15HD093024,美国国家科学基金会CAREER奖编号1752513。

Materials

Disposable safety scalpels Fine Science Tools Inc 10000-10
eXpert 7600 ADMET Inc. N/A Norwood, MA
Forceps  Fine Science Tools Inc 11006-12 and 11027-12 or 11506-12
Gauge Safe ADMET Inc. N/A Free Download
Image J NIH N/A Open Source
Proramming Software – MATLAB  Mathworks N/A version 2018A
Scissors  Fine Science Tools Inc 14094-11 or 14060-09
Sterile phosphate buffer solution  Millipore, Thomas Scientific MFCD00131855

References

  1. Brand-Saberi, B. E. M., Schäfer, T. Trachea: Anatomy and physiology. Thoracic Surgery Clinics. 24, 1-5 (2014).
  2. Barnett, S. B., Nurmagambetov, T. A. Costs of asthma in the United States: 2002-2007. The Journal of Allergy and Clinical Immunology. 127 (1), 145-152 (2011).
  3. Chronic Obstructive Pulmonary Disease (COPD). Centers for Disease Control and Prevention Available from: https://www.cdc.gov/copd/index.html (2022)
  4. Wilson, L., Devine, E. B., So, K. Direct medical costs of chronic obstructive pulmonary disease: chronic bronchitis and emphysema). Respiratory Medicine. 94 (3), 204-213 (2000).
  5. Codd, S. L., Lambert, R. K., Alley, M. R., Pack, R. J. Tensile stiffness of ovine tracheal wall. Journal of Applied Physiology. 76 (6), 2627-2635 (1994).
  6. Noble, P. B., Sharma, A., McFawn, P. K., Mitchell, H. W. Elastic properties of the bronchial mucosa: epithelial unfolding and stretch in response to airway inflation. Journal of Applied Physiology. 99 (6), 2061-2066 (2005).
  7. Teng, Z., et al. Anisotropic material behaviours of soft tissues in human trachea: An experimental study. Journal of Biomechanics. 45 (9), 1717-1723 (2012).
  8. Wang, L., et al. Mechanical properties of the tracheal mucosal membrane in the rabbit. I. steady-state stiffness as a function of age. Journal of Applied Physiology. 88 (3), 1014-1021 (2000).
  9. Ambrosi, D., et al. Perspectives on biological growth and remodeling. Journal of the Mechanics and Physics of Solids. 59 (4), 863-883 (2011).
  10. Bai, T. R., Knight, D. A. Structural changes in the airways in asthma: Observations and consequences. Clinical Science. 108 (6), 463-477 (2005).
  11. Singh, A. Extent of impaired axoplasmic transport and neurofilament compaction in traumatically injured axon at various strains and strain rates. Brain Injury. 31 (10), 1387-1395 (2017).
  12. Singh, A., Kallakuri, S., Chen, C., Cavanaugh, J. M. Structural and functional changes in nerve roots due to tension at various strains and strain rates: An in-vivo study. Journal of Neurotrauma. 26 (4), 627-640 (2009).
  13. Singh, A., Lu, Y., Chen, C., Cavanaugh, J. M. Mechanical properties of spinal nerve roots subjected to tension at different strain rates. Journal of Biomechanics. 39 (9), 1669-1676 (2006).
  14. Singh, A., Lu, Y., Chen, C., Kallakuri, S., Cavanaugh, J. M. A new model of traumatic axonal injury to determine the effects of strain and displacement rates. Stapp Car Crash Journal. 50, 601-623 (2006).
  15. Singh, A., Magee, R., Balasubramanian, S. Methods for in vivo biomechanical testing on brachial plexus in neonatal piglets. Journal of Visualized Experiments. (154), e59860 (2019).
  16. Singh, A., Magee, R., Balasubramanian, S. Mechanical properties of cervical spinal cord in neonatal piglet: in vitro. Neurology and Neurobiology. 3 (2), (2020).
  17. Singh, A., Magee, R., Balasubramanian, S. An in vitro study to investigate biomechanical responses of peripheral nerves in hypoxic neonatal piglets. Journal of Biomechanical Engineering. 143 (11), 114501 (2021).
  18. Singh, A., Shaji, S., Delivoria-Papadopoulos, M., Balasubramanian, S. Biomechanical responses of neonatal brachial plexus to mechanical stretch. Journal of Brachial Plexus and Peripheral Nerve Injury. 13, 8-14 (2018).
  19. Singh, A. . The effects of tensile loading on mechanical, neurophysiological and morphological changes in spinal nerve roots. , (2006).
  20. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9 (7), 671-675 (2012).
  21. Eskandari, M., Arvayo, A. L., Levenston, M. E. Mechanical properties of the airway tree: Heterogeneous and anisotropic pseudoelastic and viscoelastic tissue responses. Journal of Applied Physiology. 125 (3), 878-888 (2018).
  22. Toby, E. B., Rotramel, J., Jayaraman, G., Struthers, A. Changes in the stress relaxation properties of peripheral nerves after transection. Journal of Hand Surgery. 24 (4), 694-699 (1999).
  23. Safshekan, F., Tafazzoli-Shadpour, M., Abdouss, M., Shadmehr, M. B. Viscoelastic properties of human tracheal tissues. Journal of Biomechanical Engineering. 139 (1), (2017).
  24. Singh, A. A new approach to teaching biomechanics through active, adaptive, and experiential learning. Journal of Biomechanical Engineering. 139 (7), 0710011-0710017 (2017).
  25. Singh, A., Ferry, D., Balasubramanian, S. Efficacy of clinical simulation based training in biomedical engineering education. Journal of Biomechanical Engineering. 141 (12), 121011-121017 (2019).
  26. Singh, A., Ferry, D., Mills, S. Improving biomedical engineering education through continuity in adaptive, experiential, and interdisciplinary learning environments. Journal of Biomechanical Engineering. 140 (8), 0810091-0810098 (2018).
  27. Singh, A., Ferry, D., Ramakrishnan, A., Balasubramanian, S. Using virtual reality in biomedical engineering education. Journal of Biomechanical Engineering. 142 (11), 111013 (2020).
  28. Majmudar, T., Balasubramanian, S., Magee, R., Gonik, B., Singh, A. In-vitro stress relaxation response of neonatal peripheral nerves. Journal of Biomechanical Engineering. 128, 110702 (2021).
  29. Orozco, V., Magee, R., Balasubramanian, S., Singh, A. A systematic review of the tensile biomechanical properties of the neonatal brachial plexus. Journal of Biomechanical Engineering. 143 (11), 110802 (2021).
  30. Singh, A. M. T., Magee, R., Gonik, B., Balasubramanian, S. Effects of pre-stretch on neonatal peripheral nerve: An in-vitro study. Journal of Brachial Plexus and Peripheral Nerve Injury. 17 (1), 1-9 (2022).
  31. Balasubramanian, S., D’Andrea, C., Viraraghavan, G., Cahill, P. J. Development of a finite element model of the pediatric thoracic and lumbar spine, ribcage, and pelvis with orthotropic region-specific vertebral growth. Journal of Biomechanical Engineering. 144 (10), 101007 (2022).
  32. Hadagali, P., Peters, J. R., Balasubramanian, S. Morphing the feature-based multi-blocks of normative/healthy vertebral geometries to scoliosis vertebral geometries: Development of personalized finite element models. Computer Methods in Biomechanics and Biomedical Engineering. 21 (4), 297-324 (2018).
  33. Singh, A. Available computational and physical models to understand the mechanisms of neonatal brachial plexus injury during shoulder dystocia. Open Access Journal of Neurology and Neurosurgery. 9 (4), 555768 (2019).

Play Video

Cite This Article
Singh, A., Majmudar, T., Iyer, A., Iyer, D., Balasubramanian, S. Investigating Stress-relaxation and Failure Responses in the Trachea. J. Vis. Exp. (188), e64245, doi:10.3791/64245 (2022).

View Video