Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
JoVE Science Education Library
Organic Chemistry
 

再結晶により物質を浄化

Article

Transcript

Please note that all translations are automatically generated.

Click here for the English version.

再結晶は、固体化合物の浄化手法です。

再結晶を実行するには、不純な固体化合物は飽和溶液を形成する高温溶剤を混ぜています。このソリューションの冷却ソリューションから溶解性化合物の減少と純粋な結晶が成長します。

再結晶は、抽出、またはカラム ・ クロマトグラフィなど他の分離方法の後最後のステップとして用いられます。再結晶は、非常に異なる溶解性のプロパティを持つ 2 つの化合物を分離する使用ことがあります。このビデオでは、ソリューションから有機化合物の精製、再結晶化の溶媒の選択を説明し、化学のいくつかのアプリケーションを紹介します。

結晶化は核形成を開始します。溶質分子は安定した小さな結晶は、結晶成長が続きますを形成する一緒に来る。核は種結晶、傷、またはソリューションで自発的により固体不純物などの核生成サイトに高速に発生します。攪拌も急速な核形成を促すことがあります。ただし、急速な成長は、栽培に最適な条件ではなかったら、不純物の混入する可能性があります。

化合物の溶解度は温度とともに増加する傾向があるし、溶媒の選択に大きく依存。高、低気温で溶解度の差が広がります、可能性が高く冷却し、結晶の形成とソリューションの出てくる溶質のためです。

沸騰と室温との大きな温度差があるので、少なくとも 40 ° Cの沸点溶剤の選択が必要です。溶媒の沸点は、結晶化を有効にする溶質の融点以下にもなりません。急速冷却ソリューションの多くの核生成サイトの形成を誘導する、従って多くの小さな結晶の成長を支持します。ただし、遅い冷却核生成サイトが少ないの形成を誘導してより大きくより純粋な結晶を支持します。したがって、遅い冷却お勧めします。

さらに、溶媒は、不純物を最小限に抑えるために選択できます。ソリューションの不純物が溶質自体よりより水溶性の場合は、冷たい溶媒を完全に形成された結晶の洗浄ができます。しかし、不純物が少ない水溶性の場合それが最初に結晶化が、温水のソリューションは、溶質の再結晶前をフィルターできます。

単一溶媒が必要なプロパティを持たない場合は、溶剤の混合物を使用できます。溶媒のペアの最初の溶媒は容易に固体を解散すべきです。2 つ目の溶媒は溶質の溶解度が低いを有し、最初の溶媒と混和性である必要があります。一般的な溶剤のペアには、酢酸エチル、ヘキサン、トルエン、ヘキサン、メタノールとジクロロ メタン、水とエタノールが含まれます。

再結晶の原理を理解することは、再結晶による有機化合物の精製の手順を行ってみましょう。

この手順を開始するには、ガラス試験管にサンプルの 50 mg を配置します。

部屋の温度溶媒の 0.5 mL を加えます。化合物が完全に分解する場合は、再結晶に使用するコールド溶媒で溶解度が大きすぎます。それ以外の場合、沸騰するテスト チューブの混合物を加熱します。

化合物は沸点の溶媒に完全に溶解しない場合は、熱沸騰する溶媒の別の部分です。固体を完全に溶解するまで、または試験管に 3 mL 溶媒にはが含まれています、沸点溶媒を試験管に滴下追加します。まだ固体が溶解しない場合この溶媒に対する溶解性が低すぎます。

ために不純物は解散後フィルターできますように熱い溶媒に不溶または冷たい溶媒に溶解再結晶化が完了した後、彼らは溶液中に残ってそう。溶剤がすべての条件を満たす場合、再結晶に適しています。

攪拌棒三角フラスコにホット プレートの上に沸騰する溶媒を加熱すると、再結晶化を開始します。室温で別の三角フラスコで再結晶する化合物を配置します。

次に、混合物に熱い溶媒の小さな部分を追加します。フラスコ内で渦巻き混合物と同様にホット プレートの上に置きます。サンプルが完全に溶けるまで、または溶媒添加を引き起こさないさらに解散するまで、このプロセスを繰り返します。

熱い溶媒の 10% 超を蒸発を考慮してソリューションに追加します。漏斗を Büchner のセットアップにろ紙を配置します。不溶性不純物を取り除くソリューションをフィルター処理します。ろ過中に結晶を形成、する場合は、熱い溶媒滴と溶解します。

ベンチトップ ソリューションをクールします。蒸発する溶剤の損失を防ぐために、ソリューションの微粒子を保つためにフラスコをカバーします。

それが部屋の温度に冷却するまでフラスコを妨げられていない残します。攪拌冷却時により少なく純粋な結晶を産する急速結晶化を引き起こす可能性があります。結晶形成を明らかに冷却しない場合は内側を軽く掻くことによって結晶を引き起こすガラス棒や再結晶されている化合物の小さな種結晶を追加するフラスコの壁。

結晶形成が誘発されることができない場合、溶媒のいくつかを沸騰させるソリューションを再加熱して溶剤が部屋の温度をもう一度クールします。

結晶を形成している、一度氷水を準備します。結晶化が完全に表示されるまで、氷浴でソリューションをクールな覆われたソリューションを維持します。

リング スタンドにろ過フラスコをクランプ、フラスコを真空ラインに接続します。フラスコの口に漏斗を Büchner およびアダプターを設定します。

漏斗にソリューションと結晶の混合物を注ぎ、吸引ろ過を開始します。冷たい溶媒漏斗にフラスコ内の残りすべての結晶をすすいでください。冷たい溶媒可溶性不純物を除去すると目標到達プロセスの結晶を洗浄します。

結晶を乾燥し、真空ポンプをオフに漏斗を通して空気を描画していきます。必要に応じて、結晶をできる結晶の固体を保存する前に空気乾燥または乾燥器で配置に室温に立つ場合があります。

オフホワイトの固体を降伏、黄色の不純物の原油の化合物の存在が削除されています。化合物、不純物の id に基づいて、結晶の純度は、NMR 分光法、融点測定又は目視検査で確認できます。

再結晶により精製は化学合成および分析のための重要なツールです。

X 線結晶構造解析は、分子の三次元原子構造を識別する強力な評価手法です。再結晶によって得られる純粋な単結晶が必要です。タンパク質などの分子のいくつかのクラスは結晶化することは困難が、その構造は、化学的機能を理解するため非常に重要。再結晶の条件の慎重な選択と x 線結晶構造解析による分子のも、これらのクラスを分析できます。このプロセスの詳細については、結晶の結晶成長のこのコレクションのビデオを参照してください。

不純な反応は、不要な側反応を引き起こすことができます。再結晶により反応を浄化製品純度・収量を向上させます。固体製品の分離して洗浄した後反応収量も濾液から揮発性物質を削除し、結果の固体から製品を再結晶によって増加することができます。不凍剤蛋白質、または、AFPs は冷たい環境に住んでいる生物の多くで表されます。AFPs は氷面に大きな氷結晶の再結晶化を阻害するのにバインドすることによって内部の氷の成長を妨げます。異なる AFPs は氷結晶面のさまざまな種類にバインドします。Afp 通信バインド メカニズムを調査して 1 つの氷の結晶にそれらを吸着が含まれます。単一氷結晶の適切な成長は明確かつ有益な結果を得るのために不可欠です。これらのタンパク質は、凍結する耐寒性の作物のエンジニア リングからアプリケーションを持っています。

再結晶により物質を浄化するゼウスの導入を見てきただけ。技術、精製法および化学における再結晶のいくつかのアプリケーションの原則に精通している必要がありますできます。

見てくれてありがとう!

Read Article

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter