A subscription to JoVE is required to view this content.  Sign in or start your free trial.
Flow Cytometry and Fluorescence-Activated Cell Sorting (FACS): Isolation of Splenic B Lymphocytes
  • 00:01Concepts
  • 02:32Preparation of Materials and Mouse Dissection
  • 04:00Immune Cell Isolation
  • 05:49Cell Staining
  • 07:28FACS Calibration
  • 10:43Flow Cytometry and Purity Control
  • 15:17Data Analysis and Results

フローサイトメトリーと蛍光活性化細胞選別(FACS):脾臓Bリンパ球の単離

English

Share

Overview

ソース: パーチェットティボー1,2,3, ムニエ・シルヴァン1,2,3, ソフィー・ノヴォールト 4, レイチェル・ゴルブ1,2,3
リンパポイシスのための1ユニット、免疫学科、パスツール研究所、パリ、フランス
2 INSERM U1223, パリ, フランス
3ユニバーシテ パリ ディデロ, ソルボンヌ パリ シテ, セルレ パストゥール, パリ, フランス
4フローサイトメトリープラットから, サイトメトリーとバイオマーカー UtechS, 翻訳科学センター, パスツール研究所, パリ, フランス

免疫システムの全体的な機能は、感染性の生物や他の侵略者から体を守るためにあります.白血球、または白血球は、免疫系の主要なプレーヤーです。感染すると、それらは活性化され、免疫応答を開始する。白血球は、生物学的、物理的、および/または機能的(例えば、サイズ、粒度、分泌)であり得る異なるパラメータに基づいて、様々なサブ集団(例えば、骨髄細胞、リンパ球、樹状細胞)に分けることができる。白球を特徴付ける一つの方法は、主に受容体である表面タンパク質を介してです。各白色細胞集団は、集団間のサブセットを定義できる受容体(例えば、細胞傷害性、活性化、移行受容体)の特定の組み合わせを発現する。免疫系は広範囲の細胞集団を包含するので、免疫応答への参加を解読するためにそれらを特徴付ける必要があります。

フローサイトメトリー(FCまたはFCM)は、細胞表面および細胞内分子の発現を分析し、異種細胞混合物中の異なる細胞タイプを特徴付け、定義するための広く使用されている方法である。フローサイトメーターは、流体、光学、エレクトロニクスの3つの主要なサブシステムで構成されています。流体システムは、レーザーの前を1つずつ通過できるように、流れの中で細胞を輸送します。光学系は、粒子を照らす光源(レーザー)、得られた光を照らす光学フィルター、蛍光信号から適切な検出器で構成されています。最後に、エレクトロニクスシステムは、検出された光信号をコンピュータで処理できる電子信号に変換します。個々のセルがレーザー光の前を通過すると、光が散乱します。ビームの前にある検出器は、前方散乱(FS)と側面測定側散乱(SC)に複数の検出器を測定します。FSは細胞サイズと相関し、SCは細胞の粒度に比例する。このようにして、細胞集団は、多くの場合、その大きさと粒度のみの違いに基づいて区別することができます。

細胞の大きさ、形状、複雑さを解析することに加えて、フローサイトメトリーは細胞表面受容体の発現を検出するために広く使用されています(1)。これは、既知の細胞特異的受容体に結合するフルオロクロム標識モノクローナル抗体を使用することによって達成される。励起時に、これらの結合したフルオロクロムは、検出およびスコア付け可能な発光波長と呼ばれる特定の波長の光を放出します。蛍光測定は、フルオロクロム標識細胞表面受容体に関する定量的および定性的なデータを提供します。血液学者は、免疫細胞集団の治療フォローアップのためにFCを最初に使用した(2)。現在では、免疫表現、細胞生存率、遺伝子発現、細胞数計、GFP分析など幅広い用途に使用されています。

FACS(蛍光活性化細胞選別機)は、蛍光標識を用いて細胞の集団を亜集団に分類する特殊なタイプのフローサイトメトリーです。従来のフローサイトメトリーと同様に、最初のFS、SC、蛍光データが収集されます。次に、機械は電荷(負または正)を適用し、静電偏向システム(電磁石)は、適切なチューブに細胞を含む帯電液滴の収集を容易にする。

Figure 1
図 1: FACS の概略表現。試料(1)はFACS(2)で吸引され、レーザー(3)の前に通過する。細胞蛍光は蛍光検出器(4)によって感知される。最後に、細胞は液滴に組み込まれ、目的の細胞は偏向板(5)によって偏向し、集採取管(6)に集まる。残りのセルはゴミ箱に入ります (7)。この図のより大きなバージョンを表示するには、ここをクリックしてください。

FACS の並べ替えの側面には、多くの利点があります。RT-qPCR、細胞周期、サイトカイン分泌などの遺伝子発現の解析など、免疫系における特定の細胞の役割を理解するのに役立つ多くのテストがあります。しかし、明確で具体的な結果を得るために、細胞を上流に精製する必要があります。ここで、FACSは有用であり、所望の細胞は非常に高い純度で選別することができ、信頼性が高く、再現可能な結果をもたらす。FACSはまた、核または他の細胞内染色に基づいて、および表面受容体の存在、不在、および密度に応じて細胞をソートするために使用することができます。FACSは現在、細胞の亜集団の精製のための標準的な技術であり、同時に4つの集団までソートする能力を有する。

このラボ演習では、脾臓白血病を単離する方法と、FACSを用いて脾臓白血病細胞混合物からBリンパ球細胞を特異的にソートする方法を示す。

Procedure

1. 準備 始め始めの前に、実験室の手袋と適切な防護服を着用してください。 すべての解剖ツールを殺菌し、まず洗剤で、次に70%のエタノールで乾燥させ、その後完全に乾燥させます。 2%の胎児子牛血清(FCS)を含むハンクのバランス塩溶液(HBSS)の50mLを調調します。 2. 解剖 二酸化炭素送達システムを用いて、低酸…

Results

In this protocol, we purified splenic B lymphocytes using FACS technology. We first isolated leukocytes from the spleen and stained them. Using a combination of B cell surface markers, we created a gating strategy to sort them (Figure 2, top panel). At the end of the experiment we verified if cells in the collection tube were B cells via a "purity test". We kept the same gating strategy and observed that more than 98% of the cells were indeed B cells (Figure 2, bottom panel). Thus, FACS is an effective protocol to isolate immune cell populations with a high degree of purity. Collected cells can then be used for downstream experiments such as cell culture, RT-qPCR, and cytotoxicity assays.

Figure 2
Figure 2: Gating strategy and testing post-sort purity. (A) Cells were first gated based on their morphology (left: FSC-A, SSC-A), then only alive (middle left: viability, CD45), CD45+ cells (CD45, CD3) were plotted against CD19 and CD3. Only CD19+ cells were sorted. (B) Purity test results of a fraction of cells obtained after cell sorting. Please click here to view a larger version of this figure.

Applications and Summary

Flow cytometry is a first-hand technique to characterize and sort immune cell populations with a high degree of purity. It is primordial tool in research field as it allows enrichment of specific cell populations and to decipher the immune response to pathogens. With the increase in number of available fluorochromes and cytometers, the number of detectable parameters is highly increased. As a result, bioinformatic analysis of FACS data has begun to emerge and have opened new horizons to flow cytometry (3). Flow cytometry offers other applications in haematology and oncology (4) where it is used for developing diagnostic tools.

References

  1. Lanier, L. L. Just the FACS. The Journal of Immunology, 193 (5), 2043-2044 (2014).
  2. Walker, J. M. Epiblast Stem Cells IN Series Editor.
  3. Tung, J. W., Heydari, K., Tirouvanziam, R., Sahaf, B., Parks. D. R., Herzenberg, L. A., and Herzenberg. L. A. Modern Flow Cytometry: A Practical Approach. Clinics in Laboratory Medicine. 27 (3), 453-468 (2007).
  4. Walker, J. M. Tumor Angiogenesis Assays IN Series Editor.

Transcript

The immune system protects the body from invading pathogens by generating leukocytes, also called white blood cells. When a pathogen successfully infects an organism, a wide variety of leukocytes are activated and this coordinated reaction is called an immune response.

Frequently, it is useful for researchers to be able to identify the specific type and number of immune cells that have been activated in response to a pathogen. Flow cytometry is a technique that allows researchers to separate cells based on specific epitopes expressed on their surfaces. This is accomplished using fluorochrome-tagged monoclonal antibodies which bind to known immune cell specific epitopes, and upon excitation, these bound fluorochromes emit a wavelength of light which can be detected and scored by a flow cytometer.

Flow cytometers are composed of three systems. The fluidic system transports cells in a stream such that they pass in front of a laser one by one. The optical system is composed of lasers and detectors which recognize the presence or absence of the fluorophores. Finally, the electronic system converts the collected optical data into electronic files for analysis.

An extension of flow cytometry is the Fluorescence-Activated Cell Sorter, or FACS, which allows for the enrichment of specific cell populations so they can be studied independently. Cell sorting is accomplished using a vibrating nozzle within the fluidics stream which forms micro droplets, each containing a single cell. Then, a detector determines whether or not fluorescent light is being emitted from each droplet, and based on that information, an electromagnet gives each cell a negative or positive charge. Next, a strong electric field sorts the differently charged droplets into separate containers. Ultimately, one of the containers will contain a homogenous population of cells based on the expression of a specific cell surface molecule.

In this video, you will learn how to use flow cytometry to isolate leukocytes from mouse spleen tissue and FACS to select for B lymphocytes.

To begin, put on laboratory gloves and the appropriate protective clothing. Next, wash a pair of dissecting scissors and forceps first with detergent and then with 70% ethanol and then dry them with a clean paper towel.

Then, add 49 milliliters of Hank’s Balanced Salt Solution, or HBSS, to a 50 milliliter tube. Add one milliliter of Fetal Calf Serum, or FCS, to create an HBSS 2% FCS solution and mix by gently pipetting up and down approximately 10 times.

Next, place a euthanized mouse in the supine position on a dissection plate. With the scissors and forceps, perform a longitudinal laparotomy to access the abdominal cavity. Use the forceps to move the intestines on the right side of the abdomen to one side to expose the stomach and spleen. The spleen is attached to the stomach. Then, with a pipette, place five milliliters of the HBSS 2% FCS into a Petri dish. Using forceps, carefully detach the spleen from the stomach and place the spleen into the Petri dish.

To isolate the immune cells, first place the spleen on a 40 micron cell strainer in a Petri dish. Crush the spleen with a plunger to dissociate it into the dish. Then, pipette the dissociated spleen and fluid from the Petri dish into a 15 milliliter centrifuge tube. Centrifuge the tube at 370 times g for seven minutes at 10 degrees Celsius and then retrieve the tube carefully so as not to disturb the pellet.

Now, remove the supernatant, avoiding the pellet, and discard the liquid in an appropriate waste container. Then, add two milliliters of ACK lysing buffer into the centrifuge tube to resuspend and lyse the erythrocytes. Wait two minutes and then add HBSS 2% FCS to obtain a total volume of 15 milliliters. Repeat the centrifugation. Retrieve the tube carefully and discard the supernatant. Resuspend the pellet again in five milliliters of HBSS 2% FCS.

To count the resuspended cells, dilute five microliters of the cell suspension with five microliters of Trypan Blue. Then, gently deposit a five microliter drop of this diluted cell suspension between the coverglass and the Malassez slide. Now, under a microscope at 40X magnification, count the number of cells present. Then, adjust the cell concentration to 10 to the seventh cells per milliliter by adding the appropriate volume of HBSS 2% FCS.

To stain the immune cells, start by labeling six FACS tubes from one to six. Then, transfer 200 microliters of the cell solution into each of the six tubes. Centrifuge these tubes at 370 times g for seven minutes at 10 degrees Celsius and remove the supernatant.

Then, label six new FACS tubes as one through six and pipette 200 microliters of HBSS 2% FCS into each. Prepare the six novel antibody mixes by adding the appropriate amount of antibody to each tube according to table one. Mix one is for unstained cells with no addition of antibody. Mixes two through five each contain a different single antibody for compensation settings. Mix six contains all four antibodies for multi-stained cells to be used for sorting.

Next, transfer these antibody mixes to the corresponding numbered FACS tubes. Incubate these solutions for 20 minutes at four degrees Celsius or on ice in the dark. Next, add one milliliter of HBSS 2% FCS to each tube and then centrifuge again. Discard the supernatant and then resuspend the pellets in 200 microliters of HBSS 2% FCS. Finally, transfer the resuspended pellets to new labeled FACS tubes.

To perform FACS, first turn on the sorter. Then, select the cytometer menu and click fluidics startup. Follow the instructions on the screen.

On the stream tab, click on the red cross to turn on the stream and then wait 15 minutes for the stream to stabilize. Adjust the amplitude of the stream until you see a clear detached drop appear on the stream tab. Then, click sweet spot to complete the amplitude adjustment. Insert the Neutral Density, or ND, filter 1.0 in front of the laser.

Open the cytometer menu at the top of the screen and select CST, which stands for Cytometer Setup and Tracking. To perform daily quality control, first dilute CST beads with FACS medium in a FACS tube following the manufacturer’s instructions. Then, load the tube into the machine and perform the CST control by clicking run on the CST tab.

When the CST control is complete, replace the ND 1.0 filter with the ND 2.0 filter on the cytometer. Next, dilute drop delay beads in FACS medium following the manufacturer’s instructions and then load the tube into the FACS. To ensure proper sorting, perform drop delay by first clicking voltage and then optical filter. The right quadrant of the optical filter should be equal to 100%, indicating that 100% of the drops are registered by the machine. If necessary, adjust the red laser screw on the cytometer left or right to obtain 100% in the right quadrant. It is important to ensure that the stream falls into the collection tube. To do so, perform a test sort by clicking on waste drawer and then test sort. Check that the side streams fall into the collection tubes. If they do not, adjust the voltage under the sorting tab until they do.

Navigate to the experimental template by selecting the browser tab and clicking shared view. Then, open the Accudrop_DROP DELAY experiment and click the sorting layout button. Now, change the threshold rate on the acquisition dashboard by manipulating the flow rate until it reaches 3,000 events per second. Click voltage and then click optical filter. The left quadrant should be equal to zero and right quadrant equal to 100.

Finally, in the sort layout window, click sort and then click cancel. The left quadrant should be equal to 100 and the right quadrant equal to zero. If the left quadrant is less than 95, click auto delay to instruct the software to automatically increase the voltage to obtain 100% of the drops in the left quadrant.

To begin flow cytometry, we will first use unstained cells to define the cell morphology and the negative peaks of the fluorochromes. To do so, place tube one containing unstained cells in the machine and under the acquisition dashboard tab click load. In the cytometer tab, adjust the forward and side scatter voltages until you see your cell population as a dense concentration of dots on the screen. Lymphocytes are small cells, so they will have a low forward scatter and low side scatter.

Next, remove background fluorescence by adjusting the voltage for the fluorochromes in the cytometer tab until the cell populations at a negative level are in the first decade in the global worksheet tab. In the cytometer menu, click on view configuration and verify that all of the fluorochromes are present. Next, place tube two in the cytometer and click load. Adjust the spectral overlap in the cytometer tab until the negative and positive population medians are aligned in the global worksheet tab. On the acquisition tab, set the events to record parameter to 10,000 and click record. Repeat these steps with tubes three, four, and five.

Next, load tube six which contains the multi-stained cells. To isolate B lymphocytes, first set up the parameters to sort the cells based on their morphology. In the first window, plot FSC-A forward scatter area on the y-axis and SSC-A side scatter area on the x-axis. In the scatter plot, each dot represents a cell. Click on polygon gate on the global worksheet and then select the population with a low forward scatter and an intermediate side scatter. On a new dot plot window, right-click on the window and select show populations from the menu and click P1.

Then, in the new window, gate the viable CD45 positive cells by plotting viability on the y-axis and CD45 on the x-axis. Use polygon gate to circle the cells with a low viability and high CD45 signal and select P2 to display the selected cells in a new window. In the next window, gate for CD45 positive leukocytes, excluding T lymphocytes. With CD45 on the x-axis and CD3 on the y-axis, circle the population with a high CD45 signal and low negative CD3 signal and select P3. Finally, gate for CD19 positive cells which identify the B lymphocytes. With CD19 on the y-axis and CD3 on the x-axis, circle the population with a high CD19 signal and a low negative CD3 signal and select P4.

All the sorting parameters are now set. Next, in the sorting layout window, select your cell population of interest- P4, which is the fourth population that was gated, and tells the machine to only sort B lymphocytes. Set target events to 10,000 cells and set precision to purity. We are only sorting one population. However, up to four different populations can be sorted at the same time. Once ready, click sort and OK. Then, wait for cell sorting.

Once cell sorting is complete, perform a purity control by pipetting 10 microliters of the sorted cells into a new FACS tube with 90 microliters of HBSS 2% FCS. Place the tube in the cytometer, click load and then click record to analyze the phenotypes of the cells to verify that the gating strategy worked as intended.

Now, we will analyze the sorted cells to determine the percentage of B lymphocytes among the leukocytes that were isolated from the mouse spleen. To start, double click on the FlowJo icon and drag the files for each tube into the all sample window.

Click on polygon and recreate the gating strategies that were used in the previous section. Next, click layout editor and drag the B lymphocyte populations of interest from tube six and the purity control into the layout editor tab. Dot plots representing B lymphocytes will appear. In this example, the plot on the top right represents the sorted B lymphocytes from the total spleen cell suspension and the plot on the bottom right is the purity control. Cells should only appear in the population of interest in the purity control.

To check the purity of B lymphocytes in the sorted cells, click on table editor. Drag the B lymphocyte population from tube six and purity control in the table. On the statistic menu, select frequency of CD45 positive cells to test the purity of this cell population. Then, click on create table. Parameter values appear in a new table. In the purity control window, check the frequency of B lymphocytes within the CD45 positive cells, which should be higher than 98%.

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Flow Cytometry and Fluorescence-Activated Cell Sorting (FACS): Isolation of Splenic B Lymphocytes. JoVE, Cambridge, MA, (2023).