-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Science Education
Basic Biology
Drosophila Maintenance
Drosophila Maintenance
JoVE Science Education
Biology I: yeast, Drosophila and C. elegans
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Biology I: yeast, Drosophila and C. elegans
Drosophila Maintenance

3: Drosophila Maintenance

46,427 Views
08:46 min
May 10, 2013

Overview

Drosophila melanogaster, commonly known as fruit flies, are a frequently used model organism for life science research. Although starting a collection of these critters may seem as easy as leaving a banana on your kitchen counter for too long, a productive fly colony in the lab requires careful husbandry and maintenance.

This video demonstrates the necessary steps for maintaining a healthy fly stock. The overview begins with the preparation and storage of the yeast and sugar-containing media on which flies feed. Next, the vessels most commonly used for housing Drosophila are shown, as well as how and when to move flies between these containers. Finally, the presentation also includes examples of the ways in which housing and feeding conditions are manipulated for biological experiments.

Procedure

Successful Drosophila melanogaster research hinges upon correct maintenance and husbandry of this valuable model organism. The following video will discuss the necessary steps required to provide proper nutrition, housing, and handling of the fly.

Though commonly know as the fruit fly, Drosophila melanogaster actually subsists on the microorganisms, such as yeast, that grow on fermenting fruit. In the lab, the fly’s diet is modified for practical purposes. Several recipes are available, and all contain the essential components: sugar and yeast. The following recipe is from the University of Indiana in Bloomington, famous for its vast variety of fly stocks. It consists of: sterile water, yeast, soy flour, yellow cornmeal, agar for texture, corn syrup, and propionic acid to inhibit mold and bacterial growth. These ingredients are combined, heated, stirred, and then distributed into plastic housing vials using a pump. After they are filled, the vials are plugged with a cotton top, wrapped, and cooled at 4 °C. Once solidified, food is sterilized via autoclaving.

Now that we’ve learned a bit about what flies eat, let’s have a look at where they live and how they’re handled.

A variety of containers are used for housing flies. Vials are used for fly maintenance and optimally contain 50-100 adults. Bottles are used for larger cultures and house 300-600 adult flies. Incubators control the environment and are capable of holding hundreds of vials and bottles. The normal storage conditions for flies are 25 °C and 60-65% relative humidity.

When working with flies, it is important to practice proper labeling and documentation, and to keep a clean environment to maintain the integrity of fly lines and experiments. A container must be changed when about half of the pupae have eclosed, or left the pupal casing. The casings will appear clear.

FYI, the pupal stage occurs between the larval and adult stages, and is the time when the larvae incubate and develop into an adult. To identify pupal casings as clear, hold the container up to a light source and inspect the pupa.

Flies are transferred to vials with fresh media — a fancy name for fly food — via a process known as "flipping flies." Before flipping flies, inspect the media for integrity. Flies cannot survive on food cracked with dryness or contaminated with mold or bacteria.

To flip flies, first, tap the fly vial gently on the counter to knock flies off the sides of the vial. Then quickly remove the stopper, and invert the flies from the old container rapidly into a new one. This process is done rapidly, to prevent flies from escaping or being crushed by the stopper, and to prevent loose flies from entering the vial during flipping.

While flipping flies is the preferred method for the bulk transfer of Drosophila, anesthetization is required for sorting flies. Two methods of anesthetization will be discussed here: chilling, and using carbon dioxide. To chill flies place the culture in a -20 °C freezer for 8-12 minutes. Then place flies onto a chilled, flat workspace for selection. Flies can also be anesthetized using cold by chilling them directly on a frozen surface.

Carbon dioxide is a preferred method for anesthetization because it does not cause acute mortality in flies or danger to the researcher. The CO2 delivery system is made up: of a CO2 tank; a tube connected to a needle, to anesthetize flies in vials and bottles; and a tube connected to a CO2 plate for analysis under the microscope.

To anesthetize flies, insert the CO2 needle through the stopper. Alternatively, tap the container on a surface, remove the stop, and quickly invert the flies onto a CO2 plate, keeping a closed seal until the flies are immobile. Using a brush or forceps, gently move the flies into the new container.

To discard unwanted flies, dump them into a fly morgue, which consists of a large bottle filled with isopropanol or ethanol and mineral oil topped with a funnel.

Now that we’ve seen how flies are maintained and handled in the laboratory, let’s have a look at how housing and feeding conditions are modified for different experiments.

Some experiments require alternative housing in order to contain a greater amount of flies.

In this experiment, the researcher uses a fly population cage to collect a large quantity of embryos. A fly population cage is clear, plastic box capable of holding thousands of flies. The researcher releases the desired flies from several bottles into the fly population cage, then places agar plates into the cage to collect embryos.

Some experiments demand the manipulation of the fly diet.

In this experiment, the researcher wants to observe the escape response of transgenic flies that express a light-activated ion channel in neurons that regulate the flies’ escape response. The Drosophila diet is supplemented with "all-trans-retinal", which is a cofactor for this channel and allows it to function. This is done by melting the food and adding the reagent. The fly is then exposed to blue light that activates the channel and induces the escape response, and the time taken to fly measured.

A variety of housing and handling conditions can be manipulated for experimentation.

In this experiment, an elaborate "power tower" is created to study the effects of exercise on Drosophila. The power tower is a machine that continually rises and drops, taking advantage of the fly’s natural response to move upward, against gravity, which is known as "negative geotaxis."

The performance of the flies exercised in the power tower is measured using a Rapid Iterative Negative Geotaxis assay, or RING assay for short. Flies in empty vials are placed in front of a camera. The vials are tapped, and the distances climbed are recorded. This experiment shows that compared to a control group exercise had a positive impact on activity over time.

This JoVE video has covered the maintenance and husbandry of Drosophila melanogaster. After watching this video you should be able to prepare fly food media, properly identify appropriate housing, flip flies, and perform simple experiments. Thanks for watching!

Transcript

Successful Drosophila melanogaster research hinges upon correct maintenance and husbandry of this valuable model organism. The following video will discuss the necessary steps required to provide proper nutrition, housing, and handling of the fly.

Though commonly know as the fruit fly, Drosophila melanogaster actually subsists on the microorganisms, such as yeast, that grow on fermenting fruit. In the lab, the fly?s diet is modified for practical purposes. Several recipes are available, and all contain the essential components: sugar and yeast. The following recipe is from the University of Indiana in Bloomington, famous for its vast variety of fly stocks. It consists of: sterile water, yeast, soy flour, yellow cornmeal, agar for texture, corn syrup, and propionic acid to inhibit mold and bacterial growth. These ingredients are combined, heated, stirred, and then distributed into plastic housing vials using a pump. After they are filled, the vials are plugged with a cotton top, wrapped, and cooled at 4 ?C. Once solidified, food is sterilized via autoclaving.

Now that we?ve learned a bit about what flies eat, let?s have a look at where they live and how they?re handled.

A variety of containers are used for housing flies. Vials are used for fly maintenance and optimally contain 50-100 adults. Bottles are used for larger cultures and house 300-600 adult flies. Incubators control the environment and are capable of holding hundreds of vials and bottles. The normal storage conditions for flies are 25 ?C and 60-65% relative humidity.

When working with flies, it is important to practice proper labeling and documentation, and to keep a clean environment to maintain the integrity of fly lines and experiments. A container must be changed when about half of the pupae have eclosed, or left the pupal casing. The casings will appear clear.

FYI, the pupal stage occurs between the larval and adult stages, and is the time when the larvae incubate and develop into an adult. To identify pupal casings as clear, hold the container up to a light source and inspect the pupa.

Flies are transferred to vials with fresh media ? a fancy name for fly food ? via a process known as "flipping flies." Before flipping flies, inspect the media for integrity. Flies cannot survive on food cracked with dryness or contaminated with mold or bacteria.

To flip flies, first, tap the fly vial gently on the counter to knock flies off the sides of the vial. Then quickly remove the stopper, and invert the flies from the old container rapidly into a new one. This process is done rapidly, to prevent flies from escaping or being crushed by the stopper, and to prevent loose flies from entering the vial during flipping.

While flipping flies is the preferred method for the bulk transfer of Drosophila, anesthetization is required for sorting flies. Two methods of anesthetization will be discussed here: chilling, and using carbon dioxide. To chill flies place the culture in a -20 ?C freezer for 8-12 minutes. Then place flies onto a chilled, flat workspace for selection. Flies can also be anesthetized using cold by chilling them directly on a frozen surface.

Carbon dioxide is a preferred method for anesthetization because it does not cause acute mortality in flies or danger to the researcher. The CO2 delivery system is made up: of a CO2 tank; a tube connected to a needle, to anesthetize flies in vials and bottles; and a tube connected to a CO2 plate for analysis under the microscope.

To anesthetize flies, insert the CO2 needle through the stopper. Alternatively, tap the container on a surface, remove the stop, and quickly invert the flies onto a CO2 plate, keeping a closed seal until the flies are immobile. Using a brush or forceps, gently move the flies into the new container.

To discard unwanted flies, dump them into a fly morgue, which consists of a large bottle filled with isopropanol or ethanol and mineral oil topped with a funnel.

Now that we?ve seen how flies are maintained and handled in the laboratory, let?s have a look at how housing and feeding conditions are modified for different experiments.

Some experiments require alternative housing in order to contain a greater amount of flies.

In this experiment, the researcher uses a fly population cage to collect a large quantity of embryos. A fly population cage is clear, plastic box capable of holding thousands of flies. The researcher releases the desired flies from several bottles into the fly population cage, then places agar plates into the cage to collect embryos.

Some experiments demand the manipulation of the fly diet.

In this experiment, the researcher wants to observe the escape response of transgenic flies that express a light-activated ion channel in neurons that regulate the flies? escape response. The Drosophila diet is supplemented with "all-trans-retinal", which is a cofactor for this channel and allows it to function. This is done by melting the food and adding the reagent. The fly is then exposed to blue light that activates the channel and induces the escape response, and the time taken to fly measured.

A variety of housing and handling conditions can be manipulated for experimentation.

In this experiment, an elaborate "power tower" is created to study the effects of exercise on Drosophila. The power tower is a machine that continually rises and drops, taking advantage of the fly?s natural response to move upward, against gravity, which is known as "negative geotaxis."

The performance of the flies exercised in the power tower is measured using a Rapid Iterative Negative Geotaxis assay, or RING assay for short. Flies in empty vials are placed in front of a camera. The vials are tapped, and the distances climbed are recorded. This experiment shows that compared to a control group exercise had a positive impact on activity over time.

This JoVE video has covered the maintenance and husbandry of Drosophila melanogaster. After watching this video you should be able to prepare fly food media, properly identify appropriate housing, flip flies, and perform simple experiments. Thanks for watching!

Explore More Videos

Drosophila MaintenanceDrosophila HusbandryNutritionHousingHandlingFruit FlyMicroorganismsYeastLab DietRecipesUniversity Of IndianaFly StocksIngredientsWaterSoy FlourCornmealAgarCorn SyrupPropionic AcidPlastic Housing VialsAutoclavingContainersVialsBottlesIncubators

Related Videos

An Introduction to <em>Saccharomyces cerevisiae</em>

10:48

An Introduction to <em>Saccharomyces cerevisiae</em>

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

237.1K Views

An Introduction to <em>Drosophila melanogaster</em>

09:16

An Introduction to <em>Drosophila melanogaster</em>

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

188.2K Views

An Introduction to <em>Caenorhabditis elegans</em>

09:13

An Introduction to <em>Caenorhabditis elegans</em>

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

110.9K Views

Yeast Maintenance

08:30

Yeast Maintenance

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

104.8K Views

<em>Drosophila</em> Maintenance

08:46

<em>Drosophila</em> Maintenance

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

46.4K Views

<em>C. elegans</em> Maintenance

10:54

<em>C. elegans</em> Maintenance

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

72.0K Views

Yeast Reproduction

07:48

Yeast Reproduction

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

181.8K Views

<em>Drosophila</em> Development and Reproduction

12:51

<em>Drosophila</em> Development and Reproduction

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

114.4K Views

<em>C. elegans</em> Development and Reproduction

09:14

<em>C. elegans</em> Development and Reproduction

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

96.1K Views

Isolating Nucleic Acids from Yeast

06:49

Isolating Nucleic Acids from Yeast

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

39.1K Views

<em>Drosophila</em> Larval IHC

08:29

<em>Drosophila</em> Larval IHC

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

18.3K Views

RNAi in <em>C. elegans</em>

09:51

RNAi in <em>C. elegans</em>

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

90.6K Views

Yeast Transformation and Cloning

08:30

Yeast Transformation and Cloning

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

122.6K Views

<em>Drosophila melanogaster</em> Embryo and Larva Harvesting and Preparation

08:14

<em>Drosophila melanogaster</em> Embryo and Larva Harvesting and Preparation

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

53.5K Views

<em>C. elegans</em> Chemotaxis Assay

08:57

<em>C. elegans</em> Chemotaxis Assay

Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>

33.0K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code