-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Journal
Engineering
Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron
Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron
JoVE Journal
Engineering
This content is Free Access.
JoVE Journal Engineering
Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron

Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron

Full Text
12,563 Views
09:41 min
June 9, 2016

DOI: 10.3791/53742-v

Bernd Helber1,2, Olivier Chazot1, Annick Hubin2, Thierry E. Magin1

1Aeronautics and Aerospace Department,von Karman Institute for Fluid Dynamics, 2Research Group Electrochemical and Surface Engineering,Vrije Universiteit Brussel

Summary

Development of new ablative materials and their numerical modeling requires extensive experimental investigation. This protocol describes procedures for material response characterization in plasma flows with the core techniques being non-intrusive methods to track the material recession along with the chemistry in the reactive boundary layer by emission spectroscopy.

Transcript

The overall goal of this experimental procedure is to characterize the material response and gas surface interaction phenomena of ablative thermal protection materials and high NTP flows to provide data for numerical model development and validation. This method can help answer key questions in the field of thermal protection material ground testing such as how the material decomposes and how the reactive bond layer is affected. The main advantage of this technique is that we only apply optical methods, which give a wide spectrum of information and which can be relatively easily standardized for material analysis.

Generally people new to the ground testing in plasma ven-tun-ele will struggle because of the complexity of the measurement techniques. With a visual demonstration, it will be a help. The implications of this technique are meant to be extended to many heat shield materials such as ceramic composites, and especially pyrolyzing carbon phenolics.

First align the optical system using a vertical and horizontal line laser by bringing all components to the same height as the test sample and aligning the lens perpendicular to the sample stagnation line. Focus the optical path by placing the lens at the calculated distance from the test sample and the optical fiber ends at the calculated distance from the lens. Illuminate the sample stagnation point with a pencil style Mercury calibration lamp and position the fiber ends at the location of the best focused image.

Once the lens fiber system is aligned, send a laser point through the spectrometer sided fiber ends and observe the focused laser on the sample side with a white paper sheet to confirm correct position and focusing in front of the test sample. Prevent any emission except that from the focal point from entering the optical fiber ends by enclosing the optical path for instance with black cardboard. Send a laser beam through the optical fibers to check that no light emitted by the fiber end is able to reach the lens directly.

Following this, observe the test sample with a high speed camera or HSC perpendicular to the sample surface. Use the sample lens system access for horizontal and vertical alignment of the camera optics making sure the center of field of view of the HSC coincides with the center of the lens and the sample stagnation point. Synchronize the HSC and emission spectrometers with a digital delay generator or DDG.

Trigger the HSC recording with a single voltage peak from the DDG and trigger each spectrum recording with the desired frequency. For radiometry, use a two color pyrometer for observation of the surface temperature in combination with a quartz window at the test chamber. To set up the HSC software, set the high exposure time to 90 milliseconds to align and focus the HSC prior to the experiment with the test sample in place and take a pre-test image.

Change the exposure time for the experiment. Set the post-trigger to maximum and set the correct recording rate to cover the full experiment. After setting the initial F-number to 16, set the DDG to the desired repetition rate at which the spectra shall be recorded by the spectrometers.

Next, set up the spectrometer acquisition software. After confirming that the optical system is positioned correctly, take a background image with each instrument and save it. Following this start the plasma facility and bring it to the desired test condition.

Then start recording of the HD camera. Then start recording of the pyrometers. Take a free stream spectrum with all spectrometers for calibration comparison.

When finished, lower the integration time from 200 milliseconds to 50 milliseconds to prevent saturation. Trigger the HSC and spectrometers via the DDG by pressing trig and setting the mode from external to internal. Then inject the test sample into the plasma flow.

Once the testing is complete, stop the DDG. After saving the HSC images, stop the pyrometer acquisition. Following this, send a laser point through the spectrometer sided optical fiber end's spectrometer side.

Observe the laser focus with HSC and save this image to mark the position of the spectrometer. After repeating the previous step with each spectrometer, place a chessboard at the position of the test sample and record the image with the HSC for calibration. Once the test sample has been removed, record its weight.

After taking photographs of the sample, store it in sample storage to protect the brittle charred layer composed of oxidized fibers. At this point, perform an intensity calibration of each optical system by placing a tungsten ribbon lamp in the focus of each collection optic inside the test chamber. Record the calibration lamp's spectrum.

Next observe the sample injection and ejection times on the HSC video file for correct test time estimation. Observe the pixel location of the test sample stagnation point at injection from the HSC video file. Export the images previously taken and find the pixels of the spectrometer probing locations as bright spots on the image indicating the X and Y positions.

Following this, open the file containing the wavelength vector of the calibrated spectra and identify and identify the row indices corresponding to the relevant wavelengths. Plot the spectrally integrated emission of each of spectrometer as a function of the spectrometer distances from the surface. For better interpretation of the results, perform a polynomial fit of the data and plot the results.

For SEM analysis, select one single well observable fiber with the SEM system. Estimate the virgin carbon fiber thickness and fiber length with the tools provided by the SEM system software according to the manufacturer's instructions. Cut the brittle material using a scalpel.

Then estimate the depth in which the fibers are thinned by comparing the thickness of ablated fibers to the virgin fiber thickness. The results show that caliper roll recession measurement generally resulted in larger values than those performed by HSC imaging. The HSC determined recession rates in air plasma did not differ much probably due to a diffusion controlled ablation regime.

Integrated CN admission intensities plotted over distance from the ablating surface show good agreement with respect to each other. CN violet experimental spectra at low and high pressure were compared to simulated spectra in order to obtain gas temperatures. The estimated temperatures yielded a high deviation from thermal equilibrium at low pressure.

The retrieved temperatures at low pressure were 8200 Kelvin for the translation of rotational temperature and 21, 000 kelvin for the vibrational electronic temperature close to the wall with the latter decreasing through the boundary layer. This is in contrast to the equilibrium condition throughout the boundary layer at higher pressure. Micro graphs demonstrated that carbon oxidation in air plasma led to an icicle shape of the ablated fibers with an oxidation depth of around 0.2 millimeters.

Bright sparking was observed during some ablation tests which might be caused by hot fiber clusters detaching from the surface. Ablation in nitrogen plasma led to highly degraded fibers along their surface which led to a slow recession of the material by nitridation. While attending is positive, it is important to remember that experimental on numerical calculation of the plasma jets are both necessary for the understanding of the acquired data.

This method can easily be performed also on pyrolyzing materials in order to answer additional questions like other dren-sen pyrolyze the outgassing varies over time and how its time scale is different from surface ablation processes. After its development, this technique paved the way for researchers in aerospace engineering to develop models for ablation of composite materials. Use experimental data on the material response in the gas phase.

Don't forget that working with lasers and carbon fiber materials can be hazardous, and precautions such as lab coats, gloves, glasses need to be taken when performing this procedure.

Explore More Videos

Emission SpectroscopyBoundary LayerAblative Material TestingPlasmatronThermal Protection MaterialGround TestingOptical MethodsMaterial DecompositionReactive Bond LayerCeramic CompositesPyrolyzing Carbon PhenolicsOptical AlignmentHigh-speed CameraEmission Spectrometers

Related Videos

Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

11:20

Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

Related Videos

15.2K Views

Measuring Spatially- and Directionally-varying Light Scattering from Biological Material

11:57

Measuring Spatially- and Directionally-varying Light Scattering from Biological Material

Related Videos

13.7K Views

Measurement and Analysis of Atomic Hydrogen and Diatomic Molecular AlO, C2, CN, and TiO Spectra Following Laser-induced Optical Breakdown

09:40

Measurement and Analysis of Atomic Hydrogen and Diatomic Molecular AlO, C2, CN, and TiO Spectra Following Laser-induced Optical Breakdown

Related Videos

14.4K Views

How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters

08:42

How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters

Related Videos

20.1K Views

Applying X-ray Imaging Crystal Spectroscopy for Use as a High Temperature Plasma Diagnostic

06:46

Applying X-ray Imaging Crystal Spectroscopy for Use as a High Temperature Plasma Diagnostic

Related Videos

11.5K Views

Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry

07:17

Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry

Related Videos

12.9K Views

An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation

08:36

An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation

Related Videos

10.2K Views

Total Internal Reflection Absorption Spectroscopy (TIRAS) for the Detection of Solvated Electrons at a Plasma-liquid Interface

08:50

Total Internal Reflection Absorption Spectroscopy (TIRAS) for the Detection of Solvated Electrons at a Plasma-liquid Interface

Related Videos

14K Views

Growth and Electrostatic/chemical Properties of Metal/LaAlO3/SrTiO3 Heterostructures

11:54

Growth and Electrostatic/chemical Properties of Metal/LaAlO3/SrTiO3 Heterostructures

Related Videos

10.4K Views

Building Langmuir Probes and Emissive Probes for Plasma Potential Measurements in Low Pressure, Low Temperature Plasmas

08:10

Building Langmuir Probes and Emissive Probes for Plasma Potential Measurements in Low Pressure, Low Temperature Plasmas

Related Videos

4.8K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code