Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 

Highly Resolved Intravital Striped-illumination Microscopy of Germinal Centers

1Biophysical Analytics, German Rheumatism Research Center, Leibniz Institute, 2Microscopy Core Facility, Max-Delbrück Center for Molecular Medicine, 3Immunodynamics, German Rheumatism Research Center, Leibniz Institute, 4LaVision Biotec GmbH, 5Immunodynamics and Intravital Imaging, Charité - University of Medicine

JoVE 51135


 Immunology and Infection

In Vivo Functional Brain Imaging Approach Based on Bioluminescent Calcium Indicator GFP-aequorin

1Equipe: Imagerie Cérébrale Fonctionnelle et Comportements (ICFC), Institut des Neurosciences Paris-Saclay (Nero-PSI), UMR-9197, CNRS/Université Paris Sud, 2Interdisciplinary Program in Neuroscience, Graduate College, University of Iowa, 3Department of Anesthesia, Carver College of Medicine, University of Iowa

JoVE 53705


 Neuroscience

Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope

1INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, 2Université de Nîmes, 3CNRS, IES, UMR 5214, 4Aix-Marseille Université, CNRS, École Centrale Marseille, Institut Fresnel, UMR 7249, 5Montpellier RIO Imaging (MRI)

JoVE 54262


 Biology

Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents

1Neuroscience Center, University of Helsinki, 2Neurotar LTD, 3A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 4Laboratory Animal Center, University of Helsinki

JoVE 51869


 Behavior

In Vivo Two-photon Imaging Of Experience-dependent Molecular Changes In Cortical Neurons

1Unit on Neural Circuits and Adaptive Behaviors, Genes Cognition and Psychosis Program, National Institute of Mental Health, 2Department of Neuroscience, Brown University - National Institutes of Health Graduate Partnership Program, 3Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, 4Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown

JoVE 50148


 Neuroscience

Imaging Ca2+ Dynamics in Cone Photoreceptor Axon Terminals of the Mouse Retina

1Institute for Ophthalmic Research, University of Tübingen, 2Graduate School of Cellular & Molecular Neuroscience, University of Tübingen, 3Bernstein Centre for Computational Neuroscience, University of Tübingen, 4Molecular Genetics Laboratory, University of Tübingen, 5Centre for Ophthalmology, University of Tübingen

JoVE 52588


 Neuroscience

Experimental Approach for Determining Semiconductor/liquid Junction Energetics by Operando Ambient-Pressure X-ray Photoelectron Spectroscopy

1Division of Chemistry and Chemical Engineering, California Institute of Technology, 2Joint Center for Artificial Photosynthesis, California Institute of Technology, 3Advanced Light Source, Lawrence Berkeley National Laboratory, 4Beckman Institute, California Institute of Technology

Video Coming Soon

JoVE 54129


 JoVE In-Press

Neurovascular Network Explorer 2.0: A Simple Tool for Exploring and Sharing a Database of Optogenetically-evoked Vasomotion in Mouse Cortex In Vivo

1Department of Radiology, University of California, San Diego, 2Central European Institute of Technology, Brno University of Technology, 3Department of Neurosciences, University of California, San Diego, 4Department of Physics, John Carroll University, 5Department of Biomedical Engineering, Boston University, 6Bioengineering Undergraduate Program, University of California, San Diego, 7Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, 8Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School

Video Coming Soon

JoVE 57214


 JoVE In-Press

Photoelectric Effect

JoVE 10413

Source: Yong P. Chen, PhD, Department of Physics && Astronomy, College of Science, Purdue University, West Lafayette, IN

Photoelectric effect refers to the emission of electrons from a metalwhen light is shining on it. In order for the electrons to be liberated from the metal, the frequency of the light needs to be sufficiently high such that the photons in the light have sufficient energy. This energy is proportional to the light frequency.The photoelectric effect provided the experimental evidence for the quantum of light that is known as photon. This experiment will demonstrate the photoelectric effect using a charged zinc metal subject to either a regular lamp light, or ultraviolet (UV) light with higher frequency and photon energy.The zinc plate will be connected to an electroscope, an instrument that can read the presence and relative amount of charges. The experiment will demonstrate that the UV light, but not the regular lamp, can discharge the negatively charged zinc by ejecting its excess electrons.Neither light source, however, can discharge positively charged zinc, consistent with the fact that electrons that are emitted in photoelectric effect.


 Physics II

123456789152
More Results...