Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Germ Layers: The three primary germinal layers (Ectoderm; Endoderm; and Mesoderm) developed during Gastrulation that provide tissues and body plan of a mature organism. They derive from two early layers, hypoblast and epiblast.

Human Pluripotent Stem Cell Culture on Polyvinyl Alcohol-Co-Itaconic Acid Hydrogels with Varying Stiffness Under Xeno-Free Conditions

1Department of Chemical and Materials Engineering, National Central University, 2Department of Botany and Microbiology, King Saud University, 3Cathay Medical Research Institute, Cathay General Hospital, 4Graduate Institute of Systems Biology and Bioinformatics, National Central University, 5Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 6Department of Internal Medicine, Taiwan Landseed Hospital, 7Department of Zoology, Bharathiar University, 8Thiruvalluvar University

JoVE 57314


 Bioengineering

Reprogramming Primary Amniotic Fluid and Membrane Cells to Pluripotency in Xeno-free Conditions

1Mitchell Cancer Institute, University of South Alabama, 2College of Medicine, University of South Alabama, 3Institute for Regenerative Medicine, University of Zurich, 4Department of Dermatology, University Hospital Zurich, 5Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich - Irchel Campus

JoVE 56003


 Developmental Biology

Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation

1Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, 2Department of Biology, University of Konstanz, 3Department of Statistics, Technical University of Dortmund, 4Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund

JoVE 52333


 Developmental Biology

Generation of Induced Pluripotent Stem Cells from Frozen Buffy Coats using Non-integrating Episomal Plasmids

1Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), 2Laboratory of Medical Genetics, Fondazione IRCCS Ca´ Granda, Ospedale Maggiore Policlinico, 3Del E. Webb Center for Neuroscience, Aging & Stem Cell Research, Sanford-Burnham Medical Research Institute

JoVE 52885


 Developmental Biology

Generation of Integration-free Induced Pluripotent Stem Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors

1State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 2Division of Regenerative Medicine, Department of Medicine, Loma Linda University, 3Department of Orthopaedic Surgery, Loma Linda University, 4Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, 5Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, 6Collaborative Innovation Center for Cancer Medicine, 7Tianjin Key Laboratory of Blood Cell Therapy and Technology

JoVE 55091


 Developmental Biology

Neurogenesis Using P19 Embryonal Carcinoma Cells

1Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 2Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, 3Department of Regenerative Medicine, Maria Sklodowska-Curie Institute - Oncology Center, 4Department of Genomics and Biodiversities, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 5Research Centre for Nano-Bioscience, Doshisha University

Video Coming Soon

JoVE 58225


 JoVE In-Press

Analysis of Retinoic Acid-induced Neural Differentiation of Mouse Embryonic Stem Cells in Two and Three-dimensional Embryoid Bodies

1Department of Medicine, Cardeza Vascular Research Center, Sidney Kimmel Medical College, Thomas Jefferson University, 2Department of Molecular Cardiology, Cleveland Clinic Foundation, 3Department of Cancer Biology, Cardeza Vascular Research Center, Sidney Kimmel Medical College, Thomas Jefferson University

JoVE 55621


 Developmental Biology

Efficient Derivation of Human Neuronal Progenitors and Neurons from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction

1San Diego Regenerative Medicine Institute, 2Xcelthera, 3Department of Neurosurgery, Harvard Medical School, 4Division of SCI Research, VA Boston Healthcare System, 5Program in Stem Cell & Regenerative Biology, Sanford-Burnham Medical Research Institute, 6La Jolla IVF

JoVE 3273


 Neuroscience

Efficient Derivation of Human Cardiac Precursors and Cardiomyocytes from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction

1San Diego Regenerative Medicine Institute, 2Xcelthera, 3Department of Neurosurgery, Harvard Medical School, 4Division of SCI Research, VA Boston Healthcare System, 5Program in Stem Cell & Regenerative Biology, Sanford-Burnham Medical Research Institute, 6La Jolla IVF

JoVE 3274


 Biology

Drosophila Development and Reproduction

JoVE 5093

One of the many reasons that make Drosophila an extremely valuable organism is that the molecular, cellular, and genetic foundations of development are highly conserved between flies and higher eukaryotes such as humans. Drosophila progress through several developmental stages in a process known as the life cycle and each stage provides a unique platform for developmental research. This video introduces each stage of the Drosophila life cycle and details the physical characteristics and major developmental events that occur during each stage. Next, the video discusses the genetic regulation of pattern formation, which is important for establishing the body plan of the organism and specifying individual tissues and organs. In addition, this video gives an overview of Drosophila reproduction, and how to use the reproductive characteristics of Drosophila to set up a genetic cross. Finally, we discuss examples of how the principles of Drosophila development and reproduction can be applied to research. These applications include RNA interference, behavioral assays of mating behaviors, and live imaging techniques that allow us to visualize development as a dynamic process. Overall, this video highlights the importance of understanding development and reproduction in Drosophila, and how this knowledge can be use


 Biology I

Zebrafish Reproduction and Development

JoVE 5151

The zebrafish (Danio rerio) has become a popular model for studying genetics and developmental biology. The transparency of these animals at early developmental stages permits the direct visualization of tissue morphogenesis at the cellular level. Furthermore, zebrafish are amenable to genetic manipulation, allowing researchers to determine the effect of gene expression on the development of a vertebrate with a high degree of genetic similarity to humans. This video provides a brief overview of the major phases of zebrafish development, with particular focus on the first 24 hours post fertilization (hpf). The discussion begins with a zygote consisting of a single cell, or blastomere, atop a large ball of yolk. Cleavage of the blastomere is then shown to produce an embryo containing thousands of cells within a matter of hours. Next, the dramatic cellular movements known as epiboly and gastrulation are explained, revealing how they contribute to reshaping a mass of cells into a moving embryo with a beating heart in just 1 day. The presentation follows embryo development through the hatching phase, when they become swimming, feeding larvae. Important considerations for caring for larvae are incorporated, including a brief review of how fish are raised to adulthood in a dedicated facility known as the nursery. Finally, the video concludes with some commo


 Biology II

Development of the Chick

JoVE 5155

The chicken embryo (Gallus gallus domesticus) provides an economical and accessible model for developmental biology research. Chicks develop rapidly and are amenable to genetic and physiological manipulations, allowing researchers to investigate developmental pathways down to the cell and molecular levels.

This video review of chick development begins by describing the process of egg fertilization and formation within the chicken reproductive tract. Next, the most commonly used chick staging nomenclature, the Hamburger Hamilton staging series, is introduced. Major events in chick development are then outlined, including the dramatic cellular movements known as gastrulation that form the three major cell layers: The ectoderm, mesoderm, and endoderm. Cells from these layers go on to generate all the tissues within the organism, as well as extraembryonic membranes, which are necessary for the transport of gases, nutrients, and wastes within the eggshell. To conclude the discussion, some exciting techniques will be presented as strategies for studying chick development in greater detail.


 Biology II

An Introduction to the Chick: Gallus gallus domesticus

JoVE 5153

The chicken embryo (Gallus gallus domesticus) is an extremely valuable model organism for research in developmental biology, in part because most of their development takes place within an egg that is incubated outside of the mother. As a result, early developmental stages can be accessed, visualized and manipulated by simply creating a small hole in the eggshell. Since billions of chickens are raised worldwide for meat and egg production, scientists can easily and economically acquire large numbers of fertilized eggs throughout the year. Furthermore, chickens share significant genetic conservation with humans, so the genetic mechanisms that have been found to regulate chicken development are also relevant to our own biology. This video focuses on introducing the domesticated chicken as a scientific model. The discussion begins with a review of chicken phylogeny, revealing the features that make them amniotes, like other birds, reptiles, and mammals. Highlights from the millennia of chicken research will be presented, ranging from Aristotle’s postulates about the function of extra-embryonic membranes to more recent, Nobel-prize winning discoveries in neuroscience. Additionally, some current examples of studies performed in chicken embryos will be provided, such as in vivo tracking of cell movements during development and the recruitment of


 Biology II

An Introduction to Stem Cell Biology

JoVE 5331

Cells that can differentiate into a variety of cell types, known as stem cells, are at the center of one of the most exciting fields of science today. Stem cell biologists are working to understand the basic mechanisms that regulate how these cells function. These researchers are also interested in harnessing the remarkable potential of stem cells to treat human diseases.

Here, JoVE presents an introduction to the captivating world of stem cell biology. We begin with a timeline of landmark studies, from the first experimental evidence for hematopoietic stem cells in the 1960s, to more recent breakthroughs like induced pluripotent stem cells. Next, key questions about stem cell biology are introduced, for example: How do these cells maintain their unique ability to undergo self-renewal? This is followed by a discussion of some prominent methods used to answer these questions. Finally, several experiments are presented to demonstrate the use of stem cells in regenerative medicine.


 Developmental Biology

An Introduction to Organogenesis

JoVE 5334

Organogenesis is the process by which organs arise from one of three germ layers during the later stages of embryonic development. Researchers studying organogenesis want to better understand the genetic programs, cell-cell interactions, and mechanical forces involved in this process. Ultimately, scientists hope to use this knowledge to create therapies and artificial organs that will help treat human diseases. This video offers a comprehensive overview of organogenesis, starting with historical highlights describing the breakthrough studies done in the 1800\'s, all the way to the first human surgery using tissue-engineered organs performed in 2008. Next, key questions asked by developmental biologists are introduced, followed by a discussion of how tissue transplantations, imaging, and in vitro culture techniques can be used to answer these queries. Finally, we describe how these methods are currently being employed in developmental biology laboratories.


 Developmental Biology

Fate Mapping

JoVE 5335

Fate mapping is a technique used to understand how embryonic cells divide, differentiate, and migrate during development. In classic fate mapping experiments, cells in different areas of an embryo are labeled with a chemical dye and then tracked to determine which tissues or structures they form. Technological improvements now allow for individual cells to be marked and traced throughout embryonic development and adulthood. This video reviews the concepts behind fate mapping, and then details a fate mapping protocol in zebrafish using photoactivatable fluorescent proteins. Finally, specific applications and modifications of this unique technique are discussed.


 Developmental Biology

12
More Results...