Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Germ Layers: The three primary germinal layers (Ectoderm; Endoderm; and Mesoderm) developed during Gastrulation that provide tissues and body plan of a mature organism. They derive from two early layers, hypoblast and epiblast.

An Introduction to Organogenesis

JoVE 5334

Organogenesis is the process by which organs arise from one of three germ layers during the later stages of embryonic development. Researchers studying organogenesis want to better understand the genetic programs, cell-cell interactions, and mechanical forces involved in this process. Ultimately, scientists hope to use this knowledge to create therapies and artificial organs that will help…

 Developmental Biology

Induced Pluripotent Stem Cells

JoVE 10812

Stem cells are undifferentiated cells that divide and produce different types of cells. Ordinarily, cells that have differentiated into a specific cell type are post-mitotic—that is, they no longer divide. However, scientists have found a way to reprogram these mature cells so that they “de-differentiate” and return to an unspecialized, proliferative state. These cells are also pluripotent like embryonic stem cells—able to produce all cell types—and are therefore called induced pluripotent stem cells (iPSCs). iPSCs are potentially valuable in medicine, because a patient who needs a particular cell type—for instance, someone with a damaged retina due to macular degeneration—could receive a transplant of the required cells, generated from another cell type in their own body. This is called autologous transplantation, and it reduces the risk of transplant rejection that can occur when tissues are transplanted between individuals. To create iPSCs, mature cells such as skin fibroblasts or blood cells from a person are grown in culture. Then, genes for multiple transcription factors are delivered into the cells using a viral vector, and the transcription factor proteins are expressed using the cell’s machinery. The transcription factors then turn on many other genes that are expressed by embryonic stem cells, re

 Core: Biotechnology

Gastrulation

JoVE 10909

Gastrulation establishes the three primary tissues of an embryo: the ectoderm, mesoderm, and endoderm. This developmental process relies on a series of intricate cellular movements, which in humans transforms a flat, “bilaminar disc” composed of two cell sheets into a three-tiered structure. In the resulting embryo, the endoderm serves as the bottom layer, and stacked directly above it is the intermediate mesoderm, and then the uppermost ectoderm. Respectively, these tissue strata will form components of the gastrointestinal, musculoskeletal and nervous systems, among other derivatives. Depending on the species, gastrulation is achieved in different ways. For example, early mouse embryos are uniquely shaped and appear as “funnels” rather than flat discs. Gastrulation thus produces a conical embryo, arranged with an inner ectoderm layer, outer endoderm, and the mesoderm sandwiched in between (similar to the layers of a sundae cone). Due to this distinct morphological feature of mice, some researchers study other models, like rabbit or chicken—both of which develop as flat structures—to gain insights into human development. One of the main morphological features of avian and mammalian gastrulation is the primitive streak, a groove that appears down the vertical center of the embryo, and through which cells migrate t

 Core: Reproduction and Development

Development of the Chick

JoVE 5155

The chicken embryo (Gallus gallus domesticus) provides an economical and accessible model for developmental biology research. Chicks develop rapidly and are amenable to genetic and physiological manipulations, allowing researchers to investigate developmental pathways down to the cell and molecular levels.


This video review of chick development begins by describing the…

 Biology II

An Introduction to the Chick: Gallus gallus domesticus

JoVE 5153

The chicken embryo (Gallus gallus domesticus) is an extremely valuable model organism for research in developmental biology, in part because most of their development takes place within an egg that is incubated outside of the mother. As a result, early developmental stages can be accessed, visualized and manipulated by simply creating a small hole in the eggshell. Since billions of…

 Biology II

Zebrafish Reproduction and Development

JoVE 5151

The zebrafish (Danio rerio) has become a popular model for studying genetics and developmental biology. The transparency of these animals at early developmental stages permits the direct visualization of tissue morphogenesis at the cellular level. Furthermore, zebrafish are amenable to genetic manipulation, allowing researchers to determine the effect of gene expression on the…

 Biology II

Fate Mapping

JoVE 5335

Fate mapping is a technique used to understand how embryonic cells divide, differentiate, and migrate during development. In classic fate mapping experiments, cells in different areas of an embryo are labeled with a chemical dye and then tracked to determine which tissues or structures they form. Technological improvements now allow for individual cells to be marked and traced throughout…

 Developmental Biology

An Introduction to Stem Cell Biology

JoVE 5331

Cells that can differentiate into a variety of cell types, known as stem cells, are at the center of one of the most exciting fields of science today. Stem cell biologists are working to understand the basic mechanisms that regulate how these cells function. These researchers are also interested in harnessing the remarkable potential of stem cells to treat human diseases.


Here,…

 Developmental Biology

Drosophila Development and Reproduction

JoVE 5093

One of the many reasons that make Drosophila an extremely valuable organism is that the molecular, cellular, and genetic foundations of development are highly conserved between flies and higher eukaryotes such as humans. Drosophila progress through several developmental stages in a process known as the life cycle and each stage provides a unique platform for developmental…

 Biology I

Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation

1Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, 2Department of Biology, University of Konstanz, 3Department of Statistics, Technical University of Dortmund, 4Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund

JoVE 52333

 Developmental Biology

Reprogramming Primary Amniotic Fluid and Membrane Cells to Pluripotency in Xeno-free Conditions

1Mitchell Cancer Institute, University of South Alabama, 2College of Medicine, University of South Alabama, 3Institute for Regenerative Medicine, University of Zurich, 4Department of Dermatology, University Hospital Zurich, 5Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich - Irchel Campus

JoVE 56003

 Developmental Biology

Patterning the Geometry of Human Embryonic Stem Cell Colonies on Compliant Substrates to Control Tissue-Level Mechanics

1Graduate Program in Bioengineering, University of California San Francisco and University of California Berkeley, 2Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, 3Department of Mechanical Engineering, University of California Berkeley, 4Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 5UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California San Francisco, 6Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, and Department of Radiation Oncology, University of California San Francisco

JoVE 60334

 Bioengineering

Human Pluripotent Stem Cell Culture on Polyvinyl Alcohol-Co-Itaconic Acid Hydrogels with Varying Stiffness Under Xeno-Free Conditions

1Department of Chemical and Materials Engineering, National Central University, 2Department of Botany and Microbiology, King Saud University, 3Cathay Medical Research Institute, Cathay General Hospital, 4Graduate Institute of Systems Biology and Bioinformatics, National Central University, 5Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 6Department of Internal Medicine, Taiwan Landseed Hospital, 7Department of Zoology, Bharathiar University, 8Thiruvalluvar University

JoVE 57314

 Bioengineering

Generation of Induced Pluripotent Stem Cells from Frozen Buffy Coats using Non-integrating Episomal Plasmids

1Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), 2Laboratory of Medical Genetics, Fondazione IRCCS Ca´ Granda, Ospedale Maggiore Policlinico, 3Del E. Webb Center for Neuroscience, Aging & Stem Cell Research, Sanford-Burnham Medical Research Institute

JoVE 52885

 Developmental Biology

Generation of Integration-free Induced Pluripotent Stem Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors

1State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 2Division of Regenerative Medicine, Department of Medicine, Loma Linda University, 3Department of Orthopaedic Surgery, Loma Linda University, 4Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, 5Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, 6Collaborative Innovation Center for Cancer Medicine, 7Tianjin Key Laboratory of Blood Cell Therapy and Technology

JoVE 55091

 Developmental Biology

In Vivo Functional Study of Disease-associated Rare Human Variants Using Drosophila

1Department of Molecular and Human Genetics, Baylor College of Medicine, 2Program in Developmental Biology, Baylor College of Medicine, 3Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, 4Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 5Department of Neuroscience, Baylor College of Medicine

JoVE 59658

 Genetics

Isolation of Single Intracellular Bacterial Communities Generated from a Murine Model of Urinary Tract Infection for Downstream Single-cell Analysis

1Infectious Diseases Group, Genome Institute of Singapore, 2Department of Chemical and Biomolecular Engineering, National University of Singapore, 3Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore

JoVE 58829

 Immunology and Infection

Large-Scale Production of Cardiomyocytes from Human Pluripotent Stem Cells Using a Highly Reproducible Small Molecule-Based Differentiation Protocol

1Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 2Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 3St. Vincent´s Clinical School, Faculty of Medicine, University of New South Wales, 4School of Biotechnology and Biomolecular Sciences, University of New South Wales, 5Department of Developmental Biology, University of Science and Culture, 6Heart Centre for Children, The Children´s Hospital at Westmead, 7Sydney Medical School, University of Sydney, 8Department of Developmental Biology, University of Science and Culture, Tehran, Iran

JoVE 54276

 Developmental Biology

In Vitro Culture of Epithelial Cells from Different Anatomical Regions of the Human Amniotic Membrane

1Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, 2Biotecnología Médica y Farmacéutica CONACYT, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), 3Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, 4Instituto de Neurobiología, UNAM

Video Coming Soon

JoVE 60551

 JoVE In-Press

Generation of 3D Skin Organoid from Cord Blood-derived Induced Pluripotent Stem Cells

1CiSTEM Laboratory, Catholic Induced Pluripotent Stem Cell (iPSC) Research Center, College of Medicine, The Catholic University of Korea, 2Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 3Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea

JoVE 59297

 Developmental Biology

An Enzyme-Free Method for Isolation and Expansion of Human Adipose-Derived Mesenchymal Stem Cells

1Department of Medicine, Division of Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 2Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers Biomedical and Health Sciences, 3Department of Surgery, Division of Plastic Surgery, New Jersey Medical School, Rutgers Biomedical and Health Sciences

Video Coming Soon

JoVE 59419

 JoVE In-Press

Neurogenesis Using P19 Embryonal Carcinoma Cells

1Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 2Department of Regenerative Medicine, Maria Skłodowska-Curie Institute - Oncology Center, 3Department of Genomics and Biodiversities, Institute of Genetics and Animal Breeding, Polish Academy of Sciences

JoVE 58225

 Developmental Biology

Analysis of Retinoic Acid-induced Neural Differentiation of Mouse Embryonic Stem Cells in Two and Three-dimensional Embryoid Bodies

1Department of Medicine, Cardeza Vascular Research Center, Sidney Kimmel Medical College, Thomas Jefferson University, 2Department of Molecular Cardiology, Cleveland Clinic Foundation, 3Department of Cancer Biology, Cardeza Vascular Research Center, Sidney Kimmel Medical College, Thomas Jefferson University

JoVE 55621

 Developmental Biology

Visualizing the Node and Notochordal Plate In Gastrulating Mouse Embryos Using Scanning Electron Microscopy and Whole Mount Immunofluorescence

1Graduate Program in Pharmacology and Experimental Therapeutics, University of Cologne, 2Department of Dermatology and Venereology, University Hospital of Cologne, 3Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 4Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne

JoVE 58321

 Developmental Biology

Induced Pluripotent Stem Cell Generation from Blood Cells Using Sendai Virus and Centrifugation

1CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 2Division of Rheumatology, Department of Internal Medicine, Seoul St. Marys Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea

JoVE 54650

 Developmental Biology

The Production of Pluripotent Stem Cells from Mouse Amniotic Fluid Cells Using a Transposon System

1Stem Cell and Regenerative Medicine Laboratory, Fondazione Istituto di Ricerca Pediatrica Citta della Speranza, 2Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 3Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, UCL Institute of Child Health and Great Ormond Street Hospital

JoVE 54598

 Developmental Biology

Generation of Induced Pluripotent Stem Cells from Human Melanoma Tumor-infiltrating Lymphocytes

1Department of Surgery, University of Michigan, 2Department of Biochemistry II, Kanazawa Medical University, 3Center for Immunotherapy, Roswell Park Cancer Institute, 4DNAVEC Corporation, 5Department of Ophthalmology, Keio University School of Medicine, 6Department of Surgical Oncology, Roswell Park Cancer Institute

JoVE 54375

 Developmental Biology

Generation of Induced-pluripotent Stem Cells Using Fibroblast-like Synoviocytes Isolated from Joints of Rheumatoid Arthritis Patients

1CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Division of Rheumatology, Seoul St. Mary's Hospital, Republic of Korea, 2Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, Republic of Korea, 3College of Medicine, The Catholic University of Korea, Republic of Korea

JoVE 54072

 Developmental Biology
12
More Results...