Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Purkinje Cells: The output neurons of the cerebellar cortex.

A Stainless Protocol for High Quality RNA Isolation from Laser Capture Microdissected Purkinje Cells in the Human Post-Mortem Cerebellum

1Department of Pathology and Cell Biology, Columbia University, 2Division of Movement Disorders, Department of Neurology, Yale University, 3Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 4Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University

Video Coming Soon

JoVE 58953


 JoVE In-Press

Micron-scale Resolution Optical Tomography of Entire Mouse Brains with Confocal Light Sheet Microscopy

1European Laboratory for Non-linear Spectroscopy (LENS), 2Integrated Research Centre, University Campus Bio-medico of Rome, 3DAEMI, University of Cassino, 4National Institute of Optics (CNR-INO), 5Allen Institute for Brain Science, 6Department of Physics, University of Florence, 7ICON Foundation, Sesto Fiorentino, Italy

JoVE 50696


 Neuroscience

Imaging Subcellular Structures in the Living Zebrafish Embryo

1Institute of Neuronal Cell Biology, Technische Universität München, 2Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3Faculty of Biology, Ludwig-Maximilians-Universität-München, 4Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-Universität-München, 5German Center for Neurodegenerative Diseases, 6Laboratory of Brain Development and Repair, The Rockefeller University

JoVE 53456


 Developmental Biology

In Vitro and In Vivo Detection of Mitophagy in Human Cells, C. Elegans, and Mice

1Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 2Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, 3Center for Molecular Medicine, National Heart Lung and Blood Institute, National Institutes of Health, 4Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, 5Nuffield Department of Obstetrics and Gynaecology, University of Oxford, 6Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 7Department of Basic Sciences, Faculty of Medicine, University of Crete, 8Danish Center for Healthy Aging, University of Copenhagen

JoVE 56301


 Medicine

CRISPR-mediated Loss of Function Analysis in Cerebellar Granule Cells Using In Utero Electroporation-based Gene Transfer

1Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 2Division of Molecular Genetics, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), 3Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 4Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), 5Department of Pediatric Hematology and Oncology, Heidelberg University Hospital

JoVE 57311


 Developmental Biology

Histological Staining of Neural Tissue

JoVE 5206

In order to examine the cellular, structural and molecular layout of tissues and organs, researchers use a method known as histological staining. In this technique, a tissue of interest is preserved using chemical fixatives and sectioned, or cut into very thin slices. A variety of staining techniques are then applied to provide contrast to the visually uniform sections. In the study of neuroanatomy, histological techniques are frequently applied to visualize and study nervous system tissue. This video focuses on histological staining techniques for neural tissue. An overview of common brain stains is provided, including those that specifically mark neuronal cell bodies, like Nissl stains, and those that selectively highlight myelinated axons, like the Luxol Fast blue stain. Immunohistological techniques, which take advantage of the specific interaction between antibodies and unique cellular proteins, are also discussed. Next, the preparation of brain samples for staining is described, including the basic steps for fixation, embedding, sectioning, and rehydration of the tissue. The presentation also provides a step-by-step procedure for immunohistological staining followed by a Nissl stain, in addition to practical applications of these techniques.


 Neuroscience

More Results...