This collection presents commonly used purification methods, such as affinity chromatography, as well as analytical methods, like MALDI-TOF. In addition, the videos showcase methods for assessing biomolecule interaction and function, such as co-immunoprecipitation and metabolic labeling.

  • Biochemistry

    Dialysis: Diffusion Based Separation

    Dialysis is a common technique used in biochemistry for separating molecules based on diffusion. In this procedure, a semipermeable membrane allows the movement of certain molecules based on size. This method can be applied to the removal of buffer, known as desalting, or exchanging buffer molecules or ions from a protein solution.

    This video covers the principles of dialysis along with a general procedure.  Several applications of dialysis are reviewed, including the removal of gradient reagents following ultracentrifugation, removing detergent after a membrane protein extraction, and the reconstitution of proteins by changing the solution environment. Biochemical samples typically have high buffer concentrations that can disrupt downstream processing and analysis. Dialysis is a common, inexpensive technique used to separate molecules based on diffusion. The method utilizes a semi-permeable membrane that allows the movement of certain components, based on size. This video will show the concepts of dialysis, a general procedure, and some of its uses in biochemistry. The most important aspect of dialysis is a semi-permeable membrane, which has pores that impose a molecular weight cut-off, allowing molecules below a certain size to pass through. For example, a 10k membrane will generally retain molecules larger than 10 kilodaltons. However, the molecular weight cutoff is not a discrete or preci

  • Biochemistry

    Enzyme Assays and Kinetics

    Enzyme kinetics describes the catalytic effects of enzymes, which are biomolecules that facilitate chemical reactions necessary for living organisms. Enzymes act on molecules, referred to as substrates, to form products. Enzyme kinetic parameters are determined via assays that directly or indirectly measure changes in substrate or product concentration over time. 

    This video will cover the basic principles of enzyme kinetics (including rate equations) and kinetic models. The concepts governing enzyme assays are also discussed, followed by a typical colorimetric assay. The applications section discusses an enzyme assay via Förster resonance energy transfer (FRET) analysis, characterizing extracellular enzyme activity in the environment, and investigating DNA repair kinetics using molecular probes. Enzymes are biochemical catalysts that are essential for life. Enzyme assays are used to study the kinetic properties of enzymatic reactions, elucidating the catalytic effects of enzymes. This video will cover enzyme kinetics and assays, go over a general procedure, and show some applications. Enzymes are proteins or protein-like molecules that act on a reactant molecule, referred to as the substrate. Enzymes reduce the activation energy of biochemical reactions. This allows reactions to occur at faster rates with lower energy requirements. Enzymatic reactions can be broken up into th

  • Biochemistry

    MALDI-TOF Mass Spectrometry

    Matrix-assisted laser desorption ionization (MALDI) is a mass spectrometry ion source ideal for the analysis of biomolecules. Instead of ionizing compounds in the gaseous state, samples are embedded in a matrix, which is struck by a laser. The matrix absorbs the majority of the energy; some of this energy is then transferred to the sample, which ionizes as a result. Sample ions can then be identified using a time-of-flight analyzer (TOF). This video covers principles of MALDI-TOF, including matrix selection and how TOF is used to elucidate mass-to-charge ratios. This procedure shows the preparation of a MALDI plate, the loading of samples onto the plate, and the operation of the TOF-mass spectrometer. In the final section, applications and variations are shown, including whole-cell analysis, characterization of complex biological samples, and electron spray ionization. Matrix-assisted laser desorption ionization, or MALDI, is a mass spectrometry ion source ideal for the analysis of biomolecules. Most ion sources remove structural information from large, fragile biomolecules. MALDI maintains structural integrity, and therefore information, while accelerating the molecules into the mass analyzer, which separates the compounds based on size and charge. The most commonly coupled with MALDI is the time of flight, or TOF, mass analyzer. This video will show the concepts of MALDI ionization, a general pro

  • Biochemistry

    Tandem Mass Spectrometry

    In tandem mass spectrometry a biomolecule of interest is isolated from a biological sample, and then fragmented into multiple subunits in order to help elucidate its composition and sequence. This is accomplished by having mass spectrometers in series. The first spectrometer ionizes a sample and filter ions of a specific mass to charge ratio. Filtered ions are then fragmented and passed to a second mass spectrometer where the fragments are analyzed. This video introduces the principles of tandem mass spectrometry, including mass-to-ratio selection and dissociation methods. Also shown is a general procedure for analyzing a biochemical compound using tandem mass spectrometry with collision-induced dissociation. The applications section covers selection reaction monitoring, determination of protein post-translation modifications, and detection of tacrolimus levels in blood. Tandem mass spectrometry links together multiple stages of mass spectrometry to first isolate a biomolecule, and then determine aspects of its chemical makeup. Biomolecules have large, complex structures, making it difficult to determine their molecular composition. Tandem mass spectrometry selects a molecule of interest that is later fragmented into multiple subunits, which can help elucidate its identification and sequence. This video will show the concepts of tandem mass spectrometry, a general procedure, and some of its uses in bioche

  • Biochemistry

    Protein Crystallization

    Protein crystallization, obtaining a solid lattice of biomolecules, elucidates protein structure and enables the study of protein function. Crystallization involves drying purified protein under a combination of many factors, including pH, temperature, ionic strength, and protein concentration. Once crystals are obtained, the protein structure can be elucidated by x-ray diffraction and computation of an electron density model.

    This video introduces protein crystallization and shows a general procedure. Protein expression and purification, crystallization, and x-ray diffraction are covered in the procedure. Applications of protein crystallization include in silico drug design, binding site determination, and membrane protein structure analysis. Protein crystallization is the process of obtaining a latticed solid form of a protein. These crystals are especially valuable to structural biologists, assisting in the study of protein function. Other techniques, such as mass spec or SDS-PAGE, can only provide information on the one-dimensional structure of proteins. Protein crystallization is complemented by the techniques of recombinant protein expression and x-ray diffraction. This video will show the principles of protein crystallization, a general laboratory procedure, and several of its applications in the biochemical field. The first step required in the process is to obtain milligram qua

  • Biochemistry

    Chromatography-based Biomolecule Purification Methods

    In biochemistry, chromatography-based purification methods are employed to isolate compounds from a complex mixture. Two such methods used commonly by biochemists are size-exclusion chromatography and affinity chromatography. In size-exclusion chromatography, a column packed with porous beads separates components of a mixture based on size. On the other hand, affinity chromatography allows for a more specific separation of biomolecules by using a column that is composed of stationary phase, which contains target-specific ligands. This video serves as an introduction to size-exclusion and affinity chromatography, as well as the concepts that govern them. A step-by-step procedure for the purification of a histidine-tagged protein by immobilized metal affinity chromatography is described. Applications for both of these chromatographic methods in biochemistry and biomedical research are also profiled. "Chromatography" refers to a wide range of methods used to isolate a component from a complex mixture, an essential step before a biomolecule's properties and activities can be determined. Each chromatographic technique has a different mechanism for separation, depending on the sample matrix and target compound. This video will focus on the principles and operation of two methods common to biochemistry: size-exclusion and affinity chromatography. Size-exclusion chromatography or SEC is base

  • Biochemistry

    Two-Dimensional Gel Electrophoresis

    Two-dimensional gel electrophoresis (2DGE) is a technique that can resolve thousands of biomolecules from a mixture. This technique involves two distinct separation methods that have been coupled together: isoelectric focusing (IEF) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). This physically separates compounds across two axes of a gel by their isoelectric points (an electrochemical property) and their molecular weights. The procedure in this video covers the main concepts of 2DGE and a general procedure for characterizing the composition of a complex protein solution. Three examples of this technique are shown in the applications section, including biomarker detection for disease initiation and progress, monitoring treatment in patients, and the study of proteins following posttranslational modification (PTM). Two-dimensional, or 2D, gel electrophoresis is a technique utilizing two distinct separation methods which can separate thousands of proteins from a single mixture. One of the techniques, SDS-PAGE or sodium dodecyl sulfate polyacrylamide gel electrophoresis, cannot fully separate complex mixtures alone. 2D gel electrophoresis couples the SDS-PAGE to a second method, isoelectric focusing or IEF, which separates based on isoelectric points, allowing for the resolution of potentially all proteins in a cell lysate. This video will show the principles of 2D gel electrophoresi

  • Biochemistry

    Metabolic Labeling

    Metabolic labeling is used to probe the biochemical transformations and modifications that occur in a cell. This is accomplished by using chemical analogs that mimic the structure of natural biomolecules. Cells utilize analogs in their endogenous biochemical processes, producing compounds that are labeled. The label allows for the incorporation of detection and affinity tags, which can then be used to elucidate metabolic pathways using other biochemical analytical techniques, such as SDS-PAGE and NMR. This video introduces the concepts of metabolic labeling and show two general procedures.  The first uses isotopic-labeling, to characterize the phosphorylation of a protein. The second covers a photoreactive labeling to characterize protein-protein interaction within a Also three applications of metabolic labeling are presented: labeling plant material, labeling RNA to measure kinetics and labeling glycans in developing embryos. Metabolic labeling is used to investigate the machinery of a cell. This is accomplished using chemical analogs to probe the biochemical transformations and modifications that occur. This video will show the principles of metabolic labeling, typical isotopic and photoreactive labeling procedures, and some applications. Metabolic labeling can be conducted using a number of strategies. Here we will describe isotopic, photoreactive, and bio-orthogonal labeling. <

  • Biochemistry

    Electrophoretic Mobility Shift Assay (EMSA)

    The electrophoretic mobility shift assay (EMSA) is a biochemical procedure used to elucidate binding between proteins and nucleic acids. In this assay a radiolabeled nucleic acid and test protein are mixed. Binding is determined via gel electrophoresis which separates components based on mass, charge, and conformation.

    This video shows the concepts of EMSA and a general procedure, including gel and protein preparation, binding, electrophoresis, and detection. Applications covered in this video include the analysis of chromatin-remodeling enzymes, a modified EMSA that incorporates biontinylation, and the study of binding sites of bacterial response regulators. EMSA, the electrophoretic mobility shift assay, also known as the gel shift assay, is a versatile and sensitive biochemical procedure. EMSA elucidates binding between proteins and nucleic acids by detecting a shift in bands in gel electrophoresis. This video describes the principles of EMSA, provides a general procedure, and discusses some applications. DNA replication, transcription, and repair, as well as RNA processing are all critical biochemical processes. They all involve binding between proteins and nucleic acids. Many serious diseases and disorders are associated with modifications in this binding. EMSA is a technique for qualitatively determining whether a specific protein binds to a specific nucleic acid. First, the nuc

  • Biochemistry

    Photometric Protein Determination

    Measuring the concentration is a fundamental step of many biochemical assays. Photometric protein determination takes advantage of the fact that the more a sample contains light-absorbing substances, the less the light will transmit through it. Since the relationship between concentration and absorption is linear, this phenomenon can be used to measure the concentration in samples where it is unknown.

    This video describes the basics of photometric protein determination and introduces the Bradford Assay and the Lowry Method. The procedure in the video will cover a typical Bradford assay. Applications covered include direct measurement of very small volumes of nucleic acids to characterize concentration and purity, determination of coupling efficiency of a biomimetic material, and another variation of photometric protein determination using Remazol dye. Determining the concentration of a protein in samples is a fundamental step in many biochemical assays. Photometric determination can be done with small sample sizes. The more a sample contains light-absorbing substances, the less the light will transmit through it. This provides a quantitative measurement of the absorbing substances. These concepts are so fundamental to science that the articles that introduced two of the techniques are in the three most cited papers of all time. This video will show the concepts behind some of the most common photometric prot

  • Biochemistry

    Density Gradient Ultracentrifugation

    Density gradient ultracentrifugation is a common technique used to isolate and purify biomolecules and cell structures. This technique exploits the fact that, in suspension, particles that are more dense than the solvent will sediment, while those that are less dense will float. A high-speed ultracentrifuge is used to accelerate this process in order to separate biomolecules within a density gradient, which can be established by layering liquids of decreasing density in a centrifuge tube. The video will cover the principles of density gradient ultracentrifugation, including a procedure that demonstrates sample preparation, creation of a sucrose gradient, ultracentrifugation, and collection of fractionated analytes. The applications section discusses isolation of multi-protein complexes, isolation of nucleic acid complexes, and separation using cesium chloride density gradients. Density gradient ultracentrifugation is a common approach to isolate and purify cell structures for biochemical experiments. The technique uses a high-speed, or ultra, centrifuge to nondestructively separate cellular components in a density gradient. This video describes the principles of density gradient ultracentrifugation, provides a general procedure using a sucrose gradient, and discusses some applications. Let's start by examining the principles of ultracentrifuges and density gradients. A suspension contains p

  • Biochemistry

    Co-Immunoprecipitation and Pull-Down Assays

    Co-immunoprecipitation (CoIP) and pull-down assays are closely related methods to identify stable protein-protein interactions. These methods are related to immunoprecipitation, a method for separating a target protein bound to an antibody from unbound proteins. In CoIP, an antibody-bound protein is itself bound to another protein that does not bind with the antibody, this is followed by a separation process that preserves the protein-protein complex. The difference in pull-down assays is that affinity-tagged bait proteins replace antibodies, and affinity chromatography is used to isolate protein-protein complexes. This video explains CoIP, pull-down assays, and their implementation in the laboratory. A step-by-step protocol for each technique is covered, including the reagents, apparatus, and instruments used to purify and analyze bound proteins. Additionally, the applications section of this video describes a procedure to study how myxovirus proteins inhibit influenza nucleoprotein, an investigation into the role of calcium ions in calmodulin via a pull-down assay, and a modified pull-down assay for characterizing transient protein interactions. Protein-protein interactions play a significant role in a wide variety of biological functions. The majority of protein-protein interactions and their biological effects have yet to be identified. Co-immunoprecipitation, or CoIP, and pull-down assays are two closely

  • Biochemistry

    Reconstitution of Membrane Proteins

    Reconstitution is the process of returning an isolated biomolecule to its original form or function. This is particularly useful for studying membrane proteins, which enable important cellular functions and affect the behavior of nearby lipids. To study the function of purified membrane proteins in situ, they must be reconstituted by integrating them into an artificial lipid membrane.

    This video introduces membrane protein reconstitution concepts and related procedures, such as protein isolation using detergent, formation of artificial vesicles using lipids, incorporation of the isolated protein into the artificial vesicle, and separation of the detergent from the solution. Finally, two applications are covered: reconstitution of membrane transport proteins and reconstitution of light-harvesting proteins.  Reconstitution is the process of restoring an isolated biomolecule to its original form or functionality. This approach is often used when studying membrane proteins, which enable many important cellular processes and affect the behavior of neighboring lipids. However, the complexity of the cell environment makes membrane protein functions difficult to study in situ. The proteins can be extracted and purified, but their actual functions cannot be evaluated without a membrane. Therefore, isolated membrane proteins are reconstituted by integration into an artificial lipid

  • Biochemistry

    Förster Resonance Energy Transfer (FRET)

    Förster resonance energy transfer (FRET) is a phenomenon used to investigate close-range biochemical interactions. In FRET, a donor photoluminescent molecule can non-radiatively transfer energy to an acceptor molecule if their respective emission and absorbance spectra overlap. The amount of energy transferred—and consequently the overall emission of sample—depends on the proximity of an acceptor-donor pair of photoluminescent molecules. FRET analysis is combined with other biochemistry techniques to obtain detailed information of biomolecular structures and interactions from this “spectroscopic ruler.” This video covers the principles and concepts of FRET analysis. The procedure focuses on preparing samples for FRET and ways to present and interpret data. Finally, the applications include monitoring conformational and cellular processes by labeling parts of a cell or protein, monitoring enzyme reactions that alter protein structures, and using FRET to monitor aggregation of monomers expressed by cells. Förster Resonance Energy Transfer, or FRET, is a non-radiative transfer of energy between light-emitting molecules, and is often used to investigate close-range biochemical interactions. FRET only occurs when fluorescent molecules are spaced within 10 nm of each other. FRET analysis can be combined with other techniques to obtain detailed structural informatio

  • Biochemistry

    Surface Plasmon Resonance (SPR)

    Surface plasmon resonance (SPR) is the underlying optical phenomenon behind label-free biosensors to evaluate the molecular affinity, kinetics, specificity, and concentration of biomolecules. In SPR, biomolecular interactions occur on a biosensor made of a thin layer of metal on a prism. Real-time interactions of biomolecules can be monitored by measuring the changes of light reflected off the underside of the metal.

    This video describes the basic concepts of SPR and how it is used to analyze and visualize biomolecular interactions. This is followed by a sample preparation and experimental protocol for investigating binding rates using SPR. In the applications section, SPR imaging, localized SPR, and quantum dot enhanced SPR are explored. Surface plasmon resonance, or SPR, is the underlying phenomenon behind certain label-free biosensors for evaluating binding and adsorption interactions of biomolecules. Binding assays that require labeling, such as ELISA, can be a time-consuming process, and may alter the functionality of the analyte. In SPR, biomolecular interactions occur on a special sensor made of a thin layer of metal on one face of a prism. By monitoring the changes in light reflected off of the underside of the metal, SPR instruments visualize these interactions in real-time without the use of labels. This video will introduce the principles of SPR, a general procedure for SPR imaging, and so