Back to chapter

12.12:

Elektrolyten: van 't Hoff-Factor

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Electrolytes: van’t Hoff Factor

Languages

Share

Colligatieve eigenschappen van een oplossing zijn afhankelijk van het werkelijke aantal opgeloste opgeloste deeltjes. Voor een niet-elektrolyt levert elk opgelost molecuul dat oplost één opgelost molecuul op. Ionische elektrolyten, zoals natriumchloride, dissociëren echter in ionen wanneer ze worden opgelost, terwijl ammoniakgas, een covalente elektrolyt, reageert met water om ammonium-en hydroxide-ionen in oplossing vrij te maken.Dus voor elektrolyten levert elk opgeloste molecuul dat oplost meer dan één opgelost opgeloste stofdeeltje op. Zo zal een 1 molaire oplossing van een niet-elektrolyt zoals dextrose 1 mol dextrosemoleculen bevatten in een 1 liter oplossing, terwijl een 1 molaire oplossing van een elektrolyt zoals kaliumchloride zal dissociëren in bijna 1 mol kaliumionen en 1 mol chloride-ionen, in totaal 2 mol ionen in een 1 liter oplossing. Met het dubbele aantal opgeloste deeltjes, zal de osmotische druk van een 1 molaire kaliumchloride-oplossing tweemaal die van een 1 molaire dextrose-oplossing zijn.De verhouding tussen het aantal molen deeltjes dat een oplossende opgeloste stof vormt in oplossing en het aantal molen opgeloste stof dat wordt toegevoegd om een oplossing te maken, wordt de van’t Hoff-factor genoemd, weergegeven door i. Het wordt berekend door de gemeten waarde van een colligatieve eigenschap te delen door de waarde die is berekend met een formule. Overweeg de vriespuntverlaging van een kaliumchloride-oplossing.Vriespuntverlaging, ΔTf, wordt berekend door de van’t Hoff-factor voor kaliumchloride te vermenigvuldigen met de molale vriespuntverlagingsconstante en de molaliteit van de opgeloste stof. Als i 2 is en de vriespuntverlagingsconstante voor water 1, 86 graden Celsius per molal is, wordt de vriespuntverlaging van een 0, 100 molaire kaliumchlorideoplossing berekend als 0, 372 graden Celsius. De gemeten vriespuntverlaging voor een 0, 100 molaire kaliumchloride-oplossing is echter 0, 344 graden Celsius.Dit verschil bestaat omdat wanneer een elektrolyt dissocieert in ionen in oplossing, sommige kationen en anionen recombineren. Dit fenomeen wordt ionenparing genoemd. Sterke elektrolyten met sterk geladen ionen, zoals ijzer(III)chloride en magnesiumsulfaat, kunnen sterke elektrostatische interacties vormen en hebben dus een grotere neiging om ionenparen te vormen.Voor zwakke elektrolyten, zoals ammoniumhydroxide, is de dissociatie in ionen onvolledig. Dus voor zowel sterke als zwakke elektrolyten is de van’t Hoff-factor minder dan verwacht.

12.12:

Elektrolyten: van 't Hoff-Factor

Colligative Properties of Electrolytes

The colligative properties of a solution depend only on the number, not on the identity, of solute species dissolved. The concentration terms in the equations for various colligative properties (freezing point depression, boiling point elevation, osmotic pressure) pertain to all solute species present in the solution. Nonelectrolytes dissolve physically without dissociation or any other accompanying process. Each molecule that dissolves yields one dissolved solute molecule. The dissolution of an electrolyte, however, is not this simple, as illustrated by the two common examples below:

Eq1

Considering the first of these examples, and assuming complete dissociation, a 1.0 m aqueous solution of NaCl contains 2.0 moles of ions (1.0 mol Na+ and 1.0 mol Cl) per each kilogram of water, and its freezing point depression is expected to be

Eq2

However, when this solution is actually prepared and its freezing point depression is measured, a value of 3.4 °C is obtained. Similar discrepancies are observed for other ionic compounds, and the differences between the measured and expected colligative property values typically become more significant as solute concentrations increase. These observations suggest that the ions of sodium chloride (and other strong electrolytes) are not completely dissociated in solution.

To account for this and avoid the errors accompanying the assumption of total dissociation, an experimentally measured parameter named in honor of Nobel Prize-winning German chemist Jacobus Henricus van’t Hoff is used. The van’t Hoff factor (i) is defined as the ratio of solute particles in solution to the number of formula units dissolved:

Eq3

In 1923, the chemists Peter Debye and Erich Hückel proposed a theory to explain the apparent incomplete ionization of strong electrolytes. They suggested that although interionic attraction in an aqueous solution is very greatly reduced by solvation of the ions and the insulating action of the polar solvent, it is not completely nullified. The residual attractions prevent the ions from behaving as totally independent particles. In some cases, a positive and negative ion may actually touch, giving a solvated unit called an ion pair. Thus, the activity—or the effective concentration—of any particular kind of ion is less than that indicated by the actual concentration. Ions become more and more widely separated as the solution becomes more dilute and the residual interionic attractions become less and less. Thus, in extremely dilute solutions, the effective concentrations of the ions (their activities) are essentially equal to the actual concentrations. For 0.05 m solutions, the value of i for NaCl is 1.9, as opposed to an ideal value of 2.

This text is adapted from Openstax, Chemistry 2e, Section 11.4: Colligative Properties.

Suggested Reading

  1. Van Houten, Josh. "A century of chemical dynamics traced through the Nobel Prizes. 1901: Jacobus van't Hoff." Journal of Chemical Education 78, no. 12 (2001): 1570.
  2. Harned, Herbert S. "Activity Coefficients And Colligative Properties Of Electrolytes." Journal of the American Chemical Society 44, no. 2 (1922): 252-267.
  3. Randall, Merle, and Clyve Allen. "The Interpretation Of The Colligative Properties Of Weak Electrolytes." Journal of the American Chemical Society 52, no. 5 (1930): 1814-1823.