Summary

Studiare Piscine vescicole sinaptiche con fotoconversione di coloranti Styryl

Published: February 15, 2010
doi:

Summary

Coloranti FM sono stati di enorme aiuto nella comprensione delle dinamiche sinaptiche. FM sono normalmente seguiti sotto il microscopio a fluorescenza in condizioni di stimolazione differenti. Tuttavia, fotoconversione di coloranti FM combinato con il microscopio elettronico permette la visualizzazione di diverse piscine delle vescicole sinaptiche, tra i componenti ultrastruttura altro, in boutons sinaptica.

Abstract

La fusione delle vescicole sinaptiche con la membrana plasmatica (esocitosi) è un passo necessario nel rilascio dei neurotrasmettitori e la comunicazione neuronale. Le vescicole sono poi recuperati dalla membrana plasmatica (endocitosi) e raggruppati con la riserva generale di vescicole all'interno del terminale nervoso, fino a subire un nuovo ciclo eso-ed endocitosi (riciclo delle vescicole). Questi processi sono stati studiati usando una varietà di tecniche come la microscopia elettronica, le registrazioni elettrofisiologiche, amperometria e misure di capacità. È importante sottolineare che nel corso degli ultimi due decenni una serie di marker fluorescente emerse, consentendo tecniche ottiche per monitorare vescicole nelle loro dinamiche di riciclaggio. Uno degli indicatori più comunemente usato è il styryl o FM colorante 1, strutturalmente, tutti i coloranti FM contengono una testa idrofila e una coda lipofila collegato tramite un anello aromatico e uno o più doppi legami (Fig. 1B). Un esperimento di tintura classica FM per etichettare un pool di vescicole consiste nel fare il bagno nella preparazione (Fig. 1Ai) con il colorante durante la stimolazione del nervo (elettricamente o con elevata K +). Questo induce il riciclo delle vescicole e il caricamento successivo del colorante in vescicole di recente endocitato (Fig. 1A I-III). Dopo aver caricato le vescicole con colorante, un secondo round di stimoli in una tintura senza bagno sarebbe innescare il rilascio FM per esocitosi (Fig. 1A IV-V), processo che può essere seguita attraverso il monitoraggio della riduzione dell'intensità di fluorescenza (decolorazione).

Sebbene coloranti FM hanno contribuito grandemente al settore del riciclaggio delle vescicole, non è possibile determinare la localizzazione esatta o morfologia delle vescicole individuali utilizzando la microscopia a fluorescenza convenzionale. Per questo motivo, spieghiamo qui come FM coloranti possono essere utilizzati anche come marcatori endocitico usando la microscopia elettronica, attraverso fotoconversione. La tecnica fotoconversione sfrutta la proprietà di coloranti fluorescenti per generare specie reattive dell'ossigeno sotto illuminazione intensa. Preparati fluorescente sono immersi in una soluzione contenente diaminobenzidina (DAB) e illuminato. Specie reattiva, generate dalle molecole di colorante ossidare il DAB, che forma una stalla, precipitato insolubile che ha un aspetto scuro e sono facilmente riconoscibili in microscopia elettronica a 2,3. Come DAB è solo ossidato nelle immediate vicinanze di molecole fluorescenti (come le specie reattive dell'ossigeno sono di breve durata), la tecnica fa sì che le strutture solo fluorescente stanno per contenere l'elettrone-denso precipitato. La tecnica permette quindi lo studio della posizione esatta e la morfologia del attivamente riciclaggio organelli.

Protocol

1) Preparazione della giunzione Drosophila melanogaster neuronale muscolare (NMJ) Preparare standard di Drosophila salina (130 mM NaCl, 36 mM saccarosio, 5 mM KCl, 2 mM CaCl 2, 2 mM MgCl 2, 5 Hepes mM, pH 7.3 4. Sezionare la preparazione in soluzione salina (1,1). Le larve di Drosophila si struggeva dorsale laterale in un piatto Sylgard, il lato dorsale è sezionato longitudinale, e gli organi interni vengono rimossi. La preparazione è poi allungato e si st…

Discussion

A pochi passi critici devono essere presi in considerazione:

  • L'incubazione DAB deve essere eseguita solo dopo il lavaggio accurato e tempra dei preparativi. Altrimenti la glutaraldeide non ha reagito interagirà con DAB e provocare la sua precipitazione (in genere sotto forma di cristalli piatti, che non sono densi di elettroni). Preparativi in ​​cui questo avviene precipitazioni abbondantemente sono raramente utilizzabili per la microscopia elettronica.
  • Tempi di illuminazione deve essere …

Materials

Material Name Type Company Catalogue Number Comment
FM 1-43   Invitrogen F10317  
Epon resin   Plano R1030  
di-aminobenzidine hydrochloride   Sigma D5905  
50% Glutaraldehyde   AppliChem A3166 EM grade
Sylgard   Dow Corning 104186298  
Axioskop 2 FS plus   Zeiss    
Objective 20x 0.5 NA   Olympus   Dry objective
100W Hg Lamp   Zeiss    
Lamp housing with back mirror   Zeiss 1007-980  
MRm camera   Zeiss 0445-554 Image acquisition
Ex. Filter (HQ 470/40)   AHF F49-671  
Dichroic (495 DCLP)   AHF F33-100  
Em. Filter (HQ 500 LP)   AHF F42-018  
EM   Zeiss    
Proscan CCD HSS   Proscan Electronic Sys.   1024 x 1024

References

  1. Betz, W. J., Bewick, G. S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science. 255, 200-203 (1992).
  2. Henkel, A. W., Lübke, J., Betz, W. J. FM1-43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc Natl Acad Sci USA. 93, 1918-1923 (1996).
  3. Sandell, J. H., Masland, R. H. Photoconversion of some fluorescent markers to a diaminobenzidine product. J Histochem Cytochem. 36, 555-559 (1988).
  4. Kuromi, H., Kidokoro, Y. The optically determined size of exo/endo cycling vesicle pool correlates with the quantal content at the neuromuscular junction of Drosophila larvae. J Neurosci. 19, 1557-1565 (1999).
  5. Denker, A., Kröhnert, K., Rizzoli, S. O. Revisiting synaptic vesicle pool localization in the Drosophila neuromuscular junction. J Physiol (Lond). 587, 2919-2926 (2009).
  6. Rizzoli, S. O., Betz, W. J. The structural organization of the readily releasable pool of synaptic vesicles. Science. 303, 2037-2039 (2004).
  7. Darcy, K. J., Staras, K., Collinson, L. M., Goda, Y. Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci. 9, 315-321 (2006).
  8. Harata, N., Ryan, T. A., Smith, S. J., Buchanan, J., Tsien, R. W. Visualizing recycling synaptic vesicles in hippocampal neurons by FM1-43 photoconversion. Proc Natl Acad Sci USA. 98, 12748-12753 (2001).
  9. Lange, R. P. J. d. e., de Roos, A. D. G., Borst, J. G. G. Two modes of vesicle recycling in the rat calyx of Held. J Neurosci. 23, 10164-10173 (2003).
  10. Richards, D. A., Guatimosim, C., Rizzoli, S. O., Betz, W. J. Synaptic vesicle pools at the frog neuromuscular junction. Neuron. 39, 529-541 (2003).

Play Video

Cite This Article
Opazo, F., Rizzoli, S. O. Studying Synaptic Vesicle Pools using Photoconversion of Styryl Dyes. J. Vis. Exp. (36), e1790, doi:10.3791/1790 (2010).

View Video