Summary

Expression, Detergent Solubilization, and Purification of a Membrane Transporter, the MexB Multidrug Resistance Protein

Published: December 03, 2010
doi:

Summary

In this protocol we demonstrate the expression, solubilization, and purification of a recombinantly expressed membrane protein, MexB, as a soluble protein detergent complex. MexB is a multidrug resistance membrane transporter from the opportunistic bacterial pathogen Pseudomonas aeruginosa.

Abstract

Multidrug resistance (MDR), the ability of a cancer cell or pathogen to be resistant to a wide range of structurally and functionally unrelated anti-cancer drugs or antibiotics, is a current serious problem in public health. This multidrug resistance is largely due to energy-dependent drug efflux pumps. The pumps expel anti-cancer drugs or antibiotics into the external medium, lowering their intracellular concentration below a toxic threshold. We are studying multidrug resistance in Pseudomonas aeruginosa, an opportunistic bacterial pathogen that causes infections in patients with many types of injuries or illness, for example, burns or cystic fibrosis, and also in immuno-compromised cancer, dialysis, and transplantation patients. The major MDR efflux pumps in P. aeruginosa are tripartite complexes comprised of an inner membrane proton-drug antiporter (RND), an outer membrane channel (OMF), and a periplasmic linker protein (MFP) 1-8. The RND and OMF proteins are transmembrane proteins. Transmembrane proteins make up more than 30% of all proteins and are 65% of current drug targets. The hydrophobic transmembrane domains make the proteins insoluble in aqueous buffer. Before a transmembrane protein can be purified, it is necessary to find buffer conditions containing a mild detergent that enable the protein to be solubilized as a protein detergent complex (PDC) 9-11. In this example, we use an RND protein, the P. aeruginosa MexB transmembrane transporter, to demonstrate how to express a recombinant form of a transmembrane protein, solubilize it using detergents, and then purify the protein detergent complexes. This general method can be applied to the expression, purification, and solubilization of many other recombinantly expressed membrane proteins. The protein detergent complexes can later be used for biochemical or biophysical characterization including X-ray crystal structure determination or crosslinking studies.

Protocol

1. Day 1: MexB from Pseudomonas aeruginosa is encoded by pFB101. The MexB gene was amplified from P. aeruginosa genomic DNA and inserted in the NdeI and XhoI restriction sites of the pET30b+ vector. The construct contains a C-terminal hexahistidine tag. The plasmid is used to transform E. coli strain C43(DE3) 12, and the transformants are plated on LB agar containing 30 ug/mL kanamycin. 2. Day 2: Overnight…

Discussion

In addition to multidrug resistance, many vital cellular activities, including ion transport, cell-cell communication, vesicle transport, maintenance of cellular structure, and host-pathogen interactions, involve proteins that are embedded in the cell membrane. Transmembrane proteins make up over 30% of known proteins and are the targets for the majority of pharmaceuticals in use today. The improper folding or activity of transmembrane proteins lead to important genetic diseases, including cystic fibrosis and diabetes. I…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This project was supported by grants to CJJ from the National Science Foundation and the Society for Biomolecular Sciences.

Materials

Material Name Type Company Catalogue Number Comment
SDS sample buffer   Biorad 161-0737  
C43(DE3) E. coli strain   Lucigen 60345-1  
kanamycin sulfate   Sigma-Aldrich K4378  
2XYT media   Fisher BP2466-2  
LB media   Fisher AC61189-5000  
IPTG   Sigma-Aldrich I6758  
DNaseI   Fisher BP3226-1  
Lysozyme   Sigma-Aldrich L7651  
Complete EDTA-free protease inhibitor tablets   Roche 11 873 580 001  
NaP monobasic   Sigma-Aldrich S6566  
NaP dibasic   Sigma-Aldrich S5136  
NaCl   Sigma-Aldrich S6191  
MgCl2   Sigma-Aldrich M1028  
Glycerol   Fisher BP229-1  
n-dodecyl-β-D-maltopyranoside   Anatrace D310  
15ml tubes   Corning 430052  
See-Saw Rocker   Fisher SSL 4  
Talon metal affinity resin   Clontech 635503  
imidazole   Sigma-Aldrich I5513  
10% polyacrylamide SDS PAGE gels   BioRad 161-1454  
Tris/glycine/SDS PAGE running buffer   BioRad 161-0732  
Kaleidascope prestained molecular weight markers   BioRad 161-0324  
Superose 12 30/10 column   GEHealthcareSuperose 12 10/300 GL  
Amicon centrifugal concentrator   Millipore UFC801024  
Syringe filter   Fisher SLFG R04 NL  
Fernbach flasks   Fisher 09-552-39  
Shaker to hold Fernbach flasks   Fisher Scientific    
Akta system   GE Healthcare    
J6 Large scale centrifuge with JLA-8.1000 rotor   Beckman    
1 l centrifuge bottles   Beckman 969329  
RC-5 centrifuge   ThermoScientific    
SS34 fixed-angle rotor and tubes   ThermoScientific    
Sorvall floor model Ultracentrifuge   ThermoScientific    
T647.5 rotor and tubes with caps   ThermoScientific 08322  
French Pressure Cell   ThermoScientific FA-032  

References

  1. Eda, S., Maseda, H., Nakae, T. An elegant means of self-protection in gram-negative bacteria by recognizing and extruding xenobiotics from the periplasmic space. J. Biol. Chem. 278, 2085-2088 (2003).
  2. Li, X. Z., Ma, D., Livermore, D. M., Nikaido, H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance. Antimicrob. Agents Chemother. 38, 1742-1752 (1994).
  3. Li, X. Z., Nikaido, H., Poole, K. Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39, 1948-1953 (1995).
  4. Masuda, N., Sakagawa, E., Ohya, S., Gotoh, N., Tsujimoto, H., Nishino, T. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44, 3322-3327 (2000).
  5. Okusu, H., Ma, D., Nikaido, H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178, 306-308 (1996).
  6. Srikumar, R., Kon, T., Gotoh, N., Poole, K. Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain. Antimicrob. Agents Chemother. 42, 65-71 (1998).
  7. Tikhonova, E. B., Zgurskaya, H. I. AcrA, AcrB, and TolC of Escherichia coli Form a Stable Intermembrane Multidrug Efflux. Complex. J. Biol. Chem. 279, 32116-3224 (2004).
  8. Yoneyama, H., Ocakatan, A., Tsuda, M., Nakae, T. The role of mex-gene products in antibiotic extrusion in Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 233, 611-618 (1997).
  9. Berger, B. W., Gendron, C. M., Robinson, C. R., Kaler, E. W., Lenhoff, A. M. The role of protein and surfactant interactions in membrane-protein crystallization. Acta. Crystallogr. D Biol. Crystallogr. 61, 724-730 (2005).
  10. Jones, M. Surfactants in membrane solubilisation. Int. J. Pharm. 177, 137-159 (1999).
  11. Maire, M. l. e., Champeil, P., Moller, J. V. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta. 1508, 86-111 (2000).
  12. Miroux, B., Walker, J. E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289-298 (1996).

Play Video

Cite This Article
Bhatt, F. H., Jeffery, C. J. Expression, Detergent Solubilization, and Purification of a Membrane Transporter, the MexB Multidrug Resistance Protein. J. Vis. Exp. (46), e2134, doi:10.3791/2134 (2010).

View Video