Summary

遗传筛选隔离弓形虫宿主细胞的出口突变

Published: February 08, 2012
doi:

Summary

正向遗传学是一个功能强大的方法来解开如何在分子水平<em>弓形虫</em从它的宿主细胞外出。协议提供化学诱变寄生虫,丰富与缺陷突变引起的出口,并验证克隆突变体的表型。

Abstract

广泛,专性细胞内,原生动物寄生虫弓形虫会导致免疫能力受损的患者投机性疾病和先天性感染后会导致出生缺陷。裂解复制周期的特点是通过三个阶段:1。主动入侵的核宿主细胞; 2。宿主细胞内复制; 3。从宿主细胞中活跃的出口。出口机制正在越来越多地被作为一个独特的,高度调节的过程,它是在分子水平上仍然缺乏了解表示赞赏。特点通过使用药物制剂作用于不同方面的途径1-5已基本出口的信号通路。正因为如此,出口的几个独立的触发已经确定,都收敛于细胞内释放的,也是一个信号,即6-8宿主细胞的入侵的关键。这种洞察力通知的候选基因的方法而导致的识别fication植物如钙依赖的蛋白激酶(CDPK)涉及出口9。此外,最近的几次突破,了解出口已用遗传方法(化学)10-12。结合起来,增加弓形虫遗传无障碍丰富的药理信息,我们最近成立了一个屏幕,允许寄生虫与宿主细胞出口13缺陷突变富集。虽然几十年来一直使用N-乙基-N-亚硝基脲(ENU的)或甲磺酸乙酯(EMS)的化学诱变的弓形虫生物学11,14,15的研究在使用,只是最近有相关基因突变的遗传图谱表型成为常规16 -18。此外,由温度敏感突变体的产生,基本过程可以解剖和底层的基因直接确定。这些突变体表现为野生型宽容的温度(35℃)下,但未能为p在严格的温度(40℃)roliferate作为一个问题的突变的结果。在这里,我们说明了一个新的表型筛选法,隔离温度 ​​敏感的出口型13的突变体。出口屏幕所面临的挑战是分开非egressed寄生虫,这是由快速重新入侵和宿主细胞寄生虫一般粘性复杂egressed的。根据先前建立的出口屏幕上的生物素化的步骤繁琐的一系列分开11个外寄生虫内。这种方法还没有产生条件突变,导致弱表型。这里介绍的方法,克服了强烈的依恋,寄生虫,包括糖的竞争对手,硫酸葡聚糖(DS),防止寄生虫宿主细胞坚持19 egressing。此外,外寄生虫特别是杀害了吡咯烷二硫代氨基甲酸(PDTC),叶细胞内寄生虫无恙20。因此,一个新的表型屏幕,专门隔离寄生虫引起的出口缺陷突变,遗传学的力量现在可以得到充分部署,以揭示宿主细胞出口的分子机制。

Protocol

概观协议规定首先定义导致的寄生虫杀死70%的议定书(1)诱变剂量。下道工序提供丰富从诱变寄生虫池(协议2,图2)的诱导出口突变的。其次是协议测试中富集池出口突变的发生,或在个别突变体的出口型验证议定书(3)。最后,协议生成丰富的人口,由单一的寄生虫克隆有限稀释(协议)。 1。滴定法诱变使用双层手套,如要特别…

Discussion

所描述的协议提供了一个有效的方法来分离弓形虫突变与出口缺陷。我们已经成功地分离出突变沿各个步骤的出口途径,其中一些具有双重侵袭型13。使用所谓的红绿法,区别于非侵入寄生虫入侵差抗体染色23,24,可以决定对入侵的潜在影响。对于入侵和出口检测,它可以方便表示,在寄生虫13,22细胞质萤光蛋白标记。但是,如果寄生虫诱变已经表达了荧光蛋白?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国心脏协会的科学家开发格兰特0635480N和美国国立卫生研究赠款AI081220研究院。 BIC是一个圣殿骑士眼科基金会的研究经费支持。

Materials

Name of the reagent Company Catalogue number Comments
ENU Sigma-Aldrich N3385 1 M Stock in DMSO, store at -20°C
EMS Sigma-Aldrich M0880 1 M Stock in DMSO, store at -20°C
Dextran Sulfate Sigma-Aldrich D4911  
PDTC Sigma-Aldrich P8765 100 mM Stock in PBS
Diff Quick EMD Chemicals 65044-93  
Filter holder Cole-Parmer 540100  
3 μm polycarbonate filter Whatman Schleicher & Schuell 110612  
Hemocytometer Hausser Scientific 1475  
CO2 incubators Various manufacturers   Humidified, 5% CO2, at 35, 37 and 40°C
Fluorescence microscope Various manufacturers   Ideally inverted, wide-field with 63x or 100x oil objective

HBSSc (according to Black et al.11):

  • 98.0 ml Hanks Balanced Salt Solution (Hyclone catalog number SH30588)
  • 100 μl 1M MgCl2 (100 mM end)
  • 100 μl 1M CaCl2 (100 mM end)
  • 2.0 ml 1M Hepes pH 7.3 (20 mM end)
  • 84 mg NaHCO3 (10 mM end)

References

  1. Carruthers, V. B., Moreno, S. N., Sibley, L. D. Ethanol and acetaldehyde elevate intracellular [Ca2+] and stimulate microneme discharge in Toxoplasma gondii. Biochem. J. 342 (Pt 2), 379-386 (1999).
  2. Moudy, R., Manning, T. J., Beckers, C. J. The loss of cytoplasmic potassium upon host cell breakdown triggers egress of Toxoplasma gondii. J. Biol. Chem. 276 (44), 41492-41501 (2001).
  3. Silverman, J. A. Induced activation of the Toxoplasma gondii nucleoside triphosphate hydrolase leads to depletion of host cell ATP levels and rapid exit of intracellular parasites from infected cells. J. Biol. Chem. 273 (20), 12352-12359 (1998).
  4. Stommel, E. W., Ely, K. H., Schwartzman, J. D., Kasper, L. H. Toxoplasma gondii: dithiol-induced Ca2+ flux causes egress of parasites from the parasitophorous vacuole. Exp. Parasitol. 87 (2), 88-97 (1997).
  5. Fruth, I. A., Arrizabalaga, G. Toxoplasma gondii: induction of egress by the potassium ionophore nigericin. Int. J. Parasitol. 37 (14), 1559-1567 (2007).
  6. Endo, T., Sethi, K. K., Piekarski, G. Toxoplasma gondii: calcium ionophore A23187-mediated exit of trophozoites from infected murine macrophages. Exp. Parasitol. 53 (2), 179-188 (1982).
  7. Hoff, E. F., Carruthers, V. B. Is Toxoplasma egress the first step in invasion. Trends Parasitol. 18 (6), 251-255 (2002).
  8. Wetzel, D. M., Chen, L. A., Ruiz, F. A., Moreno, S. N., Sibley, L. D. Calcium-mediated protein secretion potentiates motility in Toxoplasma gondii. J. Cell. Sci. 117 (Pt 24), 5739-5748 (2004).
  9. Lourido, S. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature. 465 (7296), 359-362 (2010).
  10. Arrizabalaga, G., Ruiz, F., Moreno, S., Boothroyd, J. C. Ionophore-resistant mutant of Toxoplasma gondii reveals involvement of a sodium/hydrogen exchanger in calcium regulation. J. Cell. Biol. 165 (5), 653-662 (2004).
  11. Black, M. W., Arrizabalaga, G., Boothroyd, J. C. Ionophore-resistant mutants of Toxoplasma gondii reveal host cell permeabilization as an early event in egress. Mol. Cell. Biol. 20 (24), 9399-9408 (2000).
  12. Chandramohanadas, R. Apicomplexan Parasites Co-Opt Host Calpains to Facilitate Their Escape from Infected Cells. Science. , (2009).
  13. Eidell, K. P., Burke, T., Gubbels, M. J. Development of a screen to dissect Toxoplasma gondii egress. Mol. Biochem. Parasitol. 171 (2), 97-103 (2010).
  14. Pfefferkorn, E. R., Pfefferkorn, L. C. Toxoplasma gondii: isolation and preliminary characterization of temperature-sensitive mutants. Exp. Parasitol. 39 (3), 365-376 (1976).
  15. Pfefferkorn, E. R., Schwartzman, J. D., Kasper, L. H. Toxoplasma gondii: use of mutants to study the host-parasite relationship. Ciba. Found. Symp. 99, 74-91 (1983).
  16. Striepen, B. Genetic complementation in apicomplexan parasites. Proc. Natl. Acad. Sci. U. S. A. 99 (9), 6304-6309 (2002).
  17. White, M. W. Genetic rescue of a Toxoplasma gondii conditional cell cycle mutant. Mol. Microbiol. 55 (4), 1060-1071 (2005).
  18. Gubbels, M. J. Forward Genetic Analysis of the Apicomplexan Cell Division Cycle in Toxoplasma gondii. PLoS Pathog. 4 (2), e36-e36 (2008).
  19. Carruthers, V. B., Hakansson, S., Giddings, O. K., Sibley, L. D. Toxoplasma gondii uses sulfated proteoglycans for substrate and host cell attachment. Infect. Immun. 68 (7), 4005-4011 (2000).
  20. Camps, M., Boothroyd, J. C. Toxoplasma gondii: selective killing of extracellular parasites by oxidation using pyrrolidine dithiocarbamate. Exp. Parasitol. 98 (4), 206-214 (2001).
  21. Roos, D. S., Donald, R. G., Morrissette, N. S., Moulton, A. L. Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol. 45, 27-63 (1994).
  22. Gubbels, M. J., Li, C., Striepen, B. High-throughput growth assay for Toxoplasma gondii using yellow fluorescent protein. Antimicrob. Agents Chemother. 47 (1), 309-316 (2003).
  23. Carey, K. L., Westwood, N. J., Mitchison, T. J., Ward, G. E. A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii. Proc. Natl. Acad. Sci. U. S. A. 101 (19), 7433-7438 (2004).
  24. Kafsack, B. F., Carruthers, V. B., Pineda, F. J. Kinetic modeling of Toxoplasma gondii invasion. J. Theor. Biol. 249 (4), 817-825 (2007).
  25. Hanash, S. M., Boehnke, M., Chu, E. H., Neel, J. V., Kuick, R. D. Nonrandom distribution of structural mutants in ethylnitrosourea-treated cultured human lymphoblastoid cells. Proc. Natl. Acad. Sci. U. S. A. 85 (1), 165-169 (1988).
  26. Kafsack, B. F. Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science. 323 (5913), 530-533 (2009).
  27. Lovett, J. L., Marchesini, N., Moreno, S. N., Sibley, L. D. Toxoplasma gondii microneme secretion involves intracellular Ca(2+) release from inositol 1,4,5-triphosphate (IP(3))/ryanodine-sensitive stores. J. Biol. Chem. 277 (29), 25870-25876 (2002).
  28. Nagamune, K. Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature. 451 (7175), 207-210 (2008).
  29. Tomita, T., Yamada, T., Weiss, L. M., Orlofsky, A. Externally triggered egress is the major fate of Toxoplasma gondii during acute infection. J. Immunol. 183 (10), 6667-6680 (2009).
  30. Persson, E. K. Death receptor ligation or exposure to perforin trigger rapid egress of the intracellular parasite Toxoplasma gondii. J. Immunol. 179 (12), 8357-8365 (2007).
check_url/3807?article_type=t

Play Video

Cite This Article
Coleman, B. I., Gubbels, M. A Genetic Screen to Isolate Toxoplasma gondii Host-cell Egress Mutants. J. Vis. Exp. (60), e3807, doi:10.3791/3807 (2012).

View Video