Summary

Um modelo de rato de Fibrilação Ventricular e Reanimação por Técnica de tórax fechado convencional

Published: April 26, 2015
doi:

Summary

This article describes a rat model of electrically-induced ventricular fibrillation and resuscitation by chest compression, ventilation, and delivery of electrical shocks that simulates an episode of sudden cardiac arrest and conventional cardiopulmonary resuscitation. The model enables gathering insights on the pathophysiology of cardiac arrest and exploration of new resuscitation strategies.

Abstract

A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes – but is not limited to – hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation.

Introduction

Perto de 360 mil pessoas nos Estados Unidos 1 e muitos mais em todo o mundo 2 sofrem um episódio de parada cardíaca súbita a cada ano. As tentativas de restaurar a vida não apenas exigem que a atividade cardíaca ser restabelecida, mas que os danos aos órgãos vitais ser prevenida, minimizado ou revertido. Técnicas de ressuscitação cardiopulmonar atuais produzir uma taxa de reanimação inicial de aproximadamente 30%; no entanto, a sobrevivência à alta hospitalar é de apenas 5% 1. A disfunção miocárdica, disfunção neurológica, inflamação sistêmica, doenças intercorrentes, ou uma combinação destes se conta pós-ressuscitação para a grande proporção de pacientes que morrem apesar de retorno inicial de circulação. Assim, uma maior compreensão da fisiopatologia e da novela de reanimação abordagens subjacentes são urgentemente necessárias para aumentar a taxa de ressuscitação inicial e subsequente sobrevivência com a função do órgão intacto.

Modo de animalls de parada cardíaca desempenham um papel crítico no desenvolvimento de novas terapias de reanimação, fornecendo conhecimentos sobre a fisiopatologia da parada cardíaca e ressuscitação e oferecendo meios práticos para conceituar e testar novas intervenções antes que possam ser testada em seres humanos 3. O modelo de rato de peito fechado ressuscitação cardiopulmonar (CPR) descrito aqui tem desempenhado um papel importante. O modelo foi desenvolvido em 1988 por Irene von Planta – um bolseiro de investigação na época – e seus colaboradores 4 no laboratório do falecido professor Max Harry Weil MD, Ph.D. da Universidade de Ciências da Saúde (rebatizada Rosalind Franklin Universidade de Medicina e Ciência em 2004) e tem sido amplamente utilizada no campo da reanimação predominantemente por companheiros de Professor Weil e seus estagiários.

O modelo simula um episódio de parada cardíaca súbita com ressuscitação tentada por técnicas de RCP convencional e inclui, assim, indutoion de fibrilação ventricular (FV), fornecendo uma corrente elétrica para o endocárdio do ventrículo direito e prestação de CPR peito fechado por um dispositivo de pistão pneumaticamente enquanto concomitantemente entrega de ventilação com pressão positiva com o gás rico em oxigênio. Rescisão do VF é realizado pela entrega transtorácica de choques elétricos. O modelo de rato estabelece um equilíbrio entre os modelos desenvolvidos em animais de grande porte (por exemplo, suínos) e modelos desenvolvidos em animais menores (por exemplo, os ratos) permitindo a exploração de novos conceitos de investigação de uma forma bem padronizado, reprodutível e eficiente, com acesso a um robusto inventário das medições pertinentes. O modelo é particularmente útil nos estágios iniciais de pesquisa para explorar novos conceitos e examinar os efeitos de fatores de confusão antes de realizar estudos em modelos animais maiores, que são mais caros, mas de maior impacto translacional.

A pesquisa Medline para todos os artigos revisados ​​por pares de apresentação, conformemodelo de rato imilar ter VF como o mecanismo de parada cardíaca e alguma forma de reanimação peito fechado revelou um total de 69 estudos originais adicionais utilizando o modelo desde que foi publicado pela primeira vez em 1988 4. As áreas de pesquisa incluem aspectos fisiopatológicos da reanimação 5-17, fatores que influenciam os resultados 18-30, o papel das intervenções farmacológicas que examinam agentes vasoconstritores 31-43, agentes tampão 44, inotrópicos 45, agentes que visam a proteção do miocárdio ou cerebral 46-70, e também os efeitos das células-tronco mesenquimais 71-73.

O modelo e protocolo descrito neste artigo está sendo usado atualmente no Instituto de Ressuscitação. No entanto, existem várias oportunidades para "personalizar" o modelo com base nos recursos disponíveis para os investigadores e os objetivos dos estudos.

Protocol

NOTA: O protocolo foi aprovado pelo Comitê de Uso e Cuidado Animal Institucional da Rosalind Franklin Universidade de Medicina e Ciência. Todos os procedimentos estavam de acordo com o Guia para o Cuidado e Uso de Animais de Laboratório publicado pelo Conselho Nacional de Pesquisa. 1. Setup Experimental e Anestesia Realizar calibrações dos vários sinais que devem ser capturados utilizando um sistema de aquisição de dados (pressões, temperatura, deslocamento do pi…

Representative Results

O modelo de rato aqui descrito foi recentemente utilizado para comparar os efeitos de dois inibidores do trocador isoform sarcolemal sódio-hidrogênio 1 (NHE-1) sobre a função miocárdica e hemodinâmica durante a compressão torácica e pós-ressuscitação 61. Foi previamente relatado que NHE-1 inibidores de atenuar a lesão de reperfusão do miocárdio, limitando cytosolic induzida por sobrecarga de sódio e de cálcio mitocondrial e, assim, ajudar a preservar a distensibilidade ventricular esquerda dur…

Discussion

Passos críticos no protocolo

Há passos críticos no protocolo. Quando dominado, a preparação e protocolo proceda como sucintamente descrito abaixo. A preparação cirúrgica é célere, avançando rapidamente cateteres através de pequenas incisões provocando espasmos mínimo ou nenhum navio e posicionando as pontas dos cateteres como pretendido, seguido de intubação traqueal com sucesso após uma única ou poucas tentativa (s); assim, completando a preparação em ≈ 90 min…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge Dr. Wanchun Tang MD, MCCM, FCCP, FAHA and Jena Cahoon of the Weil Institute of Critical Care Medicine in Rancho Mirage, CA. for their contributions to the resuscitation protocol outline and for having helped train the rodent surgeon (LL). The preparation of this article was in part supported by a gift in memory of US Navy Retired SKC Robert W. Ply by Ms. Monica Ply for research in heart disease and Parkinson’s disease and by a discretionary fund from the Department of Medicine at Rosalind Franklin University of Medicine and Science.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Sodium pentobarbital Sigma Aldrich P3761 http://www.sigmaaldrich.com/catalog/product/sigma/p3761?lang=en&region=US
Rectal thermistor BIOPAC Systems, INC TSD202A http://www.biopac.com/fast-response-thermistor
Needle electrode biopolar concentric 25 mm TP BIOPAC Systems, INC EL451 http://www.biopac.com/needle-electrode-concentric-25mm
PE25 polyethylene tubing  Solomon Scientific BPE-T25 http://www.solsci.com/products/polyethylene-pe-tubing
26GA female luer stub adapter Access Technologies LSA-26 http://www.norfolkaccess.com/needles.html
Stopcocks with luer connections; 3-way; male lock, non-sterile Cole-Parmer UX-30600-02 http://www.coleparmer.com/Product/Large_bore_3_way
_male_lock_stopcocks
_10_pack_Non_sterile/EW-30600-23
TruWave disposable pressure transducer Edwards Lifesciences PX600I  http://www.edwards.com/products/pressuremonitoring/Pages/truwavemodels.aspx?truwave=1
Type-T thermocouple Physitemp Instruments IT-18 http://www.physitemp.com/products/probesandwire/flexprobes.html
Central venous pediatric catheter  Cook Medical  C-PUM-301J https://www.cookmedical.com/product/-/catalog/display?ds=cc_pum1lp_webds
Abbocath-T subclavian I.V. catheter (14g x 5 1/2") Hospira 453527 http://www.hospira.com/products_and_services/iv_sets/045350427
Novametrix Medical Systems, Infrared CO2 monitor Soma Technology, Inc. 7100 CO2SMO  http://www.somatechnology.com/MedicalProducts/novametrix_respironics_co2smo_
7100.asp
Harvard Model 683 small animal ventilator Harvard Apparatus 555282 http://www.harvardapparatus.com/webapp/wcs/stores/servlet/haisku2_10001_11051_44453_-1_
HAI_ProductDetail_N_37322_37323
Double-flexible tipped wire guides Cook Medical  C-DOC-15-40-0-2 https://www.cookmedical.com/product/-/catalog/display?ds=cc_doc_webds
High accuracy AC LVDT displacement sensor Omega Engineering LD320-25 http://www.omega.com/pptst/LD320.html
HeartStart XL defibrillator/monitor Phillips Medical Systems M4735A http://www.healthcare.philips.com/main/products/resuscitation/products/xl/
Graefe micro dissection forceps 4 inches Roboz  RS-5135 http://shopping.roboz.com/Surgical-Instrument-Online-Shopping?search=RS-5135
Graefe micro dissection forceps 4 inches with teeth Roboz  RS-5157 http://shopping.roboz.com/Surgical-Instrument-Online-Shopping?search=RS-5157
Extra fine micro dissection scissors 4 inches Roboz  RS-5882 http://shopping.roboz.com/micro-scissors-micro-forceps-groups/micro-dissecting-scissors/Micro-Dissecting-Scissors-4-Straight-Sharp-Sharp
Heiss tissue retractor Fine Science Tools  17011-10 http://www.finescience.com/Special-Pages/Products.aspx?ProductId=321&CategoryId=134&
lang=en-US
Crile curve tip hemostats Fine Science Tools  13005-14 http://www.finescience.com/Special-Pages/Products.aspx?ProductId=372
Visistat skin stapler  Teleflex Incorporated 528135 http://www.teleflexsurgicalcatalog.com/weck/products/9936
Braided silk suture, 3-0 Harvard Apparatus 517706 http://www.harvardapparatus.com/webapp/wcs/stores/servlet/haisku2_10001_11051_43051_-1_
HAI_ProductDetail_N_37916_37936
Betadine solution Butler Schein 3660 https://www.henryscheinvet.com/
Sterile saline, 250 ml bags Fisher 50-700-069 http://www.fishersci.com/ecomm/servlet/itemdetail?catnum=50700069&storeId=10652
Heparin sodium injection, USP Fresenius Kabi 504201 http://fkusa-products-catalog.com/files/assets/basic-html/page25.html
Loxicom (meloxicam) Butler Schein 045-321 https://www.henryscheinvet.com/
Thermodilution cardiac output computer for small animals N/A N/A Custom-developed at the Resuscitation Institute using National Instruments hardware and LabVIEW software
Analog-to-digital data acquisition and analysis system N/A N/A Custom-developed at the Resuscitation Institute using National Instruments hardware and LabVIEW software
Pneumatically-driven and electronically controlled piston device for chest compression in small animals N/A N/A Custom-developed at the Weil Institute of Critical Care Medicine
60 Hz alternating current generator N/A N/A Custom-developed at the Weil Institute of Critical Care Medicine

References

  1. Go, A. S., et al. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 127 (1), e6-e245 (2013).
  2. Sans, S., Kesteloot, H., Kromhout, D. The burden of cardiovascular diseases mortality in Europe. Task Force of the European Society of Cardiology on Cardiovascular Mortality and Morbidity Statistics in Europe. Eur Heart J. 18 (12), 1231-1248 (1997).
  3. Becker, L. B., et al. The PULSE initiative: scientific priorities and strategic planning for resuscitation research and life saving therapies. Circulation. 105 (21), 2562-2570 (2002).
  4. Planta, I., et al. Cardiopulmonary resuscitation in the rat. J Appl Physiol. 65 (6), 2641-2647 (1988).
  5. Planta, I., Weil, M. H., von Planta, M., Gazmuri, R. J., Duggal, C. Hypercarbic acidosis reduces cardiac resuscitability. Crit Care Med. 19 (9), 1177-1182 (1991).
  6. Duggal, C., et al. Regional blood flow during closed-chest cardiac resuscitation in rats. J Appl Physiol. 74 (1), 147-152 (1993).
  7. Tang, W., Weil, M. H., Sun, S., Gazmuri, R. J., Bisera, J. Progressive myocardial dysfunction after cardiac resuscitation. Crit Care Med. 21 (7), 1046-1050 (1993).
  8. Sun, S., et al. Cardiac resuscitation by retroaortic infusion of blood. J Lab Clin Med. 123 (1), 81-88 (1994).
  9. Kamohara, T., et al. A comparison of myocardial function after primary cardiac and primary asphyxial cardiac arrest. Am J Respir Crit Care Med. 164 (7), 1221-1224 (2001).
  10. Fang, X., et al. Cardiopulmonary resuscitation in a rat model of chronic myocardial ischemia. J Appl Physiol. 101 (4), 1091-1096 (2006).
  11. Radhakrishnan, J., et al. Circulating levels of cytochrome c after resuscitation from cardiac arrest: a marker of mitochondrial injury and predictor of survival. Am J Physiol Heart Circ Physiol. 292 (2), H767-H775 (2007).
  12. Wang, S., et al. Limiting sarcolemmal Na+ entry during resuscitation from VF prevents excess mitochondrial Ca2+ accumulation and attenuates myocardial injury. J Appl Physiol. 103 (1), 55-65 (2007).
  13. Radhakrishnan, J., Ayoub, I. M., Gazmuri, R. J. Activation of caspase-3 may not contribute to postresuscitation myocardial dysfunction. Am J Physiol Heart Circ Physiol. 296 (4), H1164-H1174 (2009).
  14. Song, F., et al. Apoptosis is not involved in the mechanism of myocardial dysfunction after resuscitation in a rat model of cardiac arrest and cardiopulmonary resuscitation. Crit Care Med. 38 (5), 1329-1334 (2010).
  15. Fang, X., et al. Ultrastructural evidence of mitochondrial abnormalities in postresuscitation myocardial dysfunction. Resuscitation. 83 (3), 386-394 (2012).
  16. Jiang, J., et al. Impaired cerebral mitochondrial oxidative phosphorylation function in a rat model of ventricular fibrillation and cardiopulmonary resuscitation. Biomed Res Int. (192769), 1-9 (2014).
  17. Qian, J., et al. Post-resuscitation intestinal microcirculation: Its relationship with sublingual microcirculation and the severity of post-resuscitation syndrome. Resuscitation. 85 (6), 833-839 (2014).
  18. Noc, M., et al. Ventricular fibrillation voltage as a monitor of the effectiveness of cardiopulmonary resuscitation. J Lab Clin Med. 124 (3), 421-426 (1994).
  19. Noc, M., Weil, M. H., Sun, S., Tang, W., Bisera, J. Spontaneous gasping during cardiopulmonary resuscitation without mechanical ventilation. Am J Respir Crit Care Med. 150 (3), 861-864 (1994).
  20. Tang, W., et al. Cardiopulmonary resuscitation by precordial compression but without mechanical ventilation. Am J Respir Crit Care Med. 150 (3), 1709-1713 (1994).
  21. Duggal, C., Weil, M. H., Tang, W., Gazmuri, R. J., Sun, S. Effect of arrest time on the hemodynamic efficacy of precordial compression. Crit Care Med. 23 (7), 1233-1236 (1995).
  22. Fukui, M., Weil, M. H., Tang, W., Yang, L., Sun, S. Airway protection during experimental CPR [see comments. Chest. 108 (6), 1663-1667 (1995).
  23. Sato, Y., et al. Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation. Crit Care Med. 25 (5), 733-736 (1997).
  24. Xie, J., et al. High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation. 96 (2), 683-688 (1997).
  25. Ayoub, I. M., Brown, D. J., Gazmuri, R. J. Transtracheal oxygenation: an alternative to endotracheal intubation during cardiac arrest. Chest. 120 (5), 163-170 (2001).
  26. Kolarova, J., Ayoub, I. M., Yi, Z., Gazmuri, R. J. Optimal timing for electrical defibrillation after prolonged untreated ventricular fibrillation. Crit Care Med. 31 (7), 2022-2028 (2003).
  27. Song, F., et al. Delayed high-quality CPR does not improve outcomes. Resuscitation. 82 (Suppl 2), S52-S55 (2011).
  28. Sun, S., et al. Optimizing the duration of CPR prior to defibrillation improves the outcome of CPR in a rat model of prolonged cardiac arrest. Resuscitation. 82 (Suppl 2), S3-S7 (2011).
  29. Ye, S., et al. Comparison of the durations of mild therapeutic hypothermia on outcome after cardiopulmonary resuscitation in the rat. Circulation. 125 (1), 123-129 (2012).
  30. Fang, X., Huang, L., Sun, S., Weil, M. H., Tang, W. Outcome of prolonged ventricular fibrillation and CPR in a rat model of chronic ischemic left ventricular dysfunction. Biomed Res Int. 2013 (564501), 1-7 (2013).
  31. Tang, W., et al. Pulmonary ventilation/perfusion defects induced by epinephrine during cardiopulmonary resuscitation. Circulation. 84 (5), 2101-2107 (1991).
  32. Planta, I., Wagner, O., von Planta, M., Ritz, R. Determinants of survival after rodent cardiac arrest: implications for therapy with adrenergic agents. Int J Cardiol. 38, 235-245 (1993).
  33. Planta, I., Wagner, O., von Planta, M., Scheidegger, D. Coronary perfusion pressure, end-tidal CO2 and adrenergic agents in haemodynamic stable rats. Resuscitation. 25 (3), 203-217 (1993).
  34. Tang, W., et al. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation. 92 (10), 3089-3093 (1995).
  35. Pan, T., Chau, S., von, P. M., Studer, W., Scheidgger, D. An experimental comparative study on the characteristics of ventricular fibrillation during cardiac arrest and methoxamine administration. J Tongji Med Univ. 17 (2), 94-97 (1997).
  36. Pan, T., Zhou, S., Studer, W., von Planta, M., Scheidegger, D. Effect of different drugs on end-tidal carbon dioxide during rodent CPR. J Tongji Med Univ. 17 (4), 244-246 (1997).
  37. Sun, S., Weil, M. H., Tang, W., Povoas, H. P., Mason, E. Combined effects of buffer and adrenergic agents on postresuscitation myocardial function. J Pharmacol Exp Ther. 291 (2), 773-777 (1999).
  38. Sun, S., Weil, M. H., Tang, W., Kamohara, T., Klouche, K. alpha-Methylnorepinephrine, a selective alpha2-adrenergic agonist for cardiac resuscitation. J Am Coll Cardiol. 37 (3), 951-956 (2001).
  39. Studer, W., Wu, X., Siegemund, M., Seeberger, M. Resuscitation from cardiac arrest with adrenaline/epinephrine or vasopressin: effects on intestinal mucosal tonometer pCO(2) during the postresuscitation period in rats. Resuscitation. 53 (2), 201-207 (2002).
  40. Klouche, K., Weil, M. H., Sun, S., Tang, W., Zhao, D. H. A comparison of alpha-methylnorepinephrine, vasopressin and epinephrine for cardiac resuscitation. Resuscitation. 57 (1), 93-100 (2003).
  41. Cammarata, G., et al. Beta1-adrenergic blockade during cardiopulmonary resuscitation improves survival. Crit Care Med. 32 (9 Supppl), S440-S443 (2004).
  42. Huang, L., Weil, M. H., Cammarata, G., Sun, S., Tang, W. Nonselective beta-blocking agent improves the outcome of cardiopulmonary resuscitation in a rat model. Crit Care Med. 32 (9 Suppl), S378-S380 (2004).
  43. Sun, S., et al. The effects of epinephrine on outcomes of normothermic and therapeutic hypothermic cardiopulmonary resuscitation. Crit Care Med. 38 (11), 2175-2180 (2010).
  44. Sun, S., Weil, M. H., Tang, W., Fukui, M. Effects of buffer agents on postresuscitation myocardial dysfunction. Crit Care Med. 24 (12), 2035-2041 (1996).
  45. Studer, W., et al. Influence of dobutamine on the variables of systemic haemodynamics, metabolism, and intestinal perfusion after cardiopulmonary resuscitation in the rat. Resuscitation. 64 (2), 227-232 (2005).
  46. Planta, M., von Planta, I., Wagner, O., Scheidegger, D. Adenosine during cardiac arrest and cardiopulmonary resuscitation: a placebo-controlled, randomized trial. Crit Care Med. 20 (5), 645-649 (1992).
  47. Tang, W., Weil, M. H., Sun, S., Pernat, A., Mason, E. K(ATP) channel activation reduces the severity of postresuscitation myocardial dysfunction. Am J Physiol. 279 (4), (2000).
  48. Gazmuri, R. J., Ayoub, I. M., Hoffner, E., Kolarova, J. D. Successful ventricular defibrillation by the selective sodium-hydrogen exchanger isoform-1 inhibitor cariporide. Circulation. 104 (2), 234-239 (2001).
  49. Gazmuri, R. J., Ayoub, I. M., Kolarova, J. D., Karmazyn, M. Myocardial protection during ventricular fibrillation by inhibition of the sodium-hydrogen exchanger isoform-1. Crit Care Med. 30 (4 Suppl), S166-S171 (2002).
  50. Wann, S. R., Weil, M. H., Sun, S., T, T. a. n. g. ,. W. .. ,. &. a. m. p. ;. P. e. l. l. i. s. ,. Pharmacologic defibrillation. Crit Care Med. 30 (4 Suppl), S154-S156 (2002).
  51. Sun, S., Weil, M. H., Tang, W., Kamohara, T., Klouche, K. Delta-opioid receptor agonist reduces severity of postresuscitation myocardial dysfunction. Am J Physiol. 287 (2), H969-H974 (2004).
  52. Wang, J., et al. A lazaroid mitigates postresuscitation myocardial dysfunction. Crit Care Med. 32 (2), 553-558 (2004).
  53. Huang, L., et al. Levosimendan improves postresuscitation outcomes in a rat model of CPR. J Lab Clin Med. 146 (5), 256-261 (2005).
  54. Kolarova, J., Yi, Z., Ayoub, I. M., Gazmuri, R. J. Cariporide potentiates the effects of epinephrine and vasopressin by nonvascular mechanisms during closed-chest resuscitation. Chest. 127 (4), 1327-1334 (2005).
  55. Kolarova, J. D., Ayoub, I. M., Gazmuri, R. J. Cariporide enables hemodynamically more effective chest compression by leftward shift of its flow-depth relationship. Am J Physiol Heart Circ Physiol. 288 (6), H2904-H2911 (2005).
  56. Fang, X., et al. Mechanism by which activation of delta-opioid receptor reduces the severity of postresuscitation myocardial dysfunction. Crit Care Med. 34 (10), 2607-2612 (2006).
  57. Singh, D., Kolarova, J. D., Wang, S., Ayoub, I. M., Gazmuri, R. J. Myocardial protection by erythropoietin during resuscitation from ventricular fibrillation. Am J Ther. 14 (4), 361-368 (2007).
  58. Shan, Y., Sun, S., Yang, X., Weil, M. H., Tang, W. Opioid receptor agonist reduces myocardial ischemic injury when administered during early phase of myocardial ischemia. Resuscitation. 81 (6), 761-765 (2010).
  59. Sun, S., et al. Pharmacologically induced hypothermia with cannabinoid receptor agonist WIN55, 212-2 after cardiopulmonary resuscitation. Crit Care Med. 38 (12), 2282-2286 (2010).
  60. Chung, S. P., et al. Effect of therapeutic hypothermia vs delta-opioid receptor agonist on post resuscitation myocardial function in a rat model of CPR. Resuscitation. 82 (3), 350-354 (2011).
  61. Radhakrishnan, J., Kolarova, J. D., Ayoub, I. M., Gazmuri, R. J. AVE4454B–a novel sodium-hydrogen exchanger isoform-1 inhibitor–compared less effective than cariporide for resuscitation from cardiac arrest. Transl Res. 157 (2), 71-80 (2011).
  62. Tsai, M. S., et al. Ascorbic acid mitigates the myocardial injury after cardiac arrest and electrical shock. Intensive Care Med. 37 (12), 2033-2040 (2011).
  63. Weng, Y., et al. Cholecystokinin octapeptide induces hypothermia and improves outcomes in a rat model of cardiopulmonary resuscitation. Crit Care Med. 39 (11), 2407-2412 (2011).
  64. Hayashida, K., et al. H(2) gas improves functional outcome after cardiac arrest to an extent comparable to therapeutic hypothermia in a rat model. J Am Heart Assoc. 1 (5), e003459-e003459 (2012).
  65. Motl, J., Radhakrishnan, J., Ayoub, I. M., Grmec, S., Gazmuri, R. J. Vitamin C compromises cardiac resuscitability in a rat model of ventricular fibrillation. Am J Ther. Jun. 16, (2012).
  66. Weng, Y., et al. Cannabinoid 1 (CB1) receptor mediates WIN55, 212-2 induced hypothermia and improved survival in a rat post-cardiac arrest model. Resuscitation. 83 (9), 1145-1151 (2012).
  67. Radhakrishnan, J., et al. Erythropoietin facilitates resuscitation from ventricular fibrillation by signaling protection of mitochondrial bioenergetic function in rats. Am J Transl Res. 5 (3), 316-326 (2013).
  68. Rungatscher, A., et al. Cardioprotective effect of delta-opioid receptor agonist vs. mild therapeutic hypothermia in a rat model of cardiac arrest with extracorporeal life support. Resuscitation. 84 (2), 244-248 (2013).
  69. Ma, L., Lu, X., Xu, J., Sun, S., Tang, W. Improved cardiac and neurologic outcomes with postresuscitation infusion of cannabinoid receptor agonist WIN55, 212-2 depend on hypothermia in a rat model of cardiac arrest. Crit Care Med. 42 (1), 42-48 (2014).
  70. Tsai, M. S., et al. Combination of intravenous ascorbic acid administration and hypothermia after resuscitation improves myocardial function and survival in a ventricular fibrillation cardiac arrest model in the rat. Acad Emerg Med. 21 (3), 257-265 (2014).
  71. Wang, T., et al. Intravenous infusion of bone marrow mesenchymal stem cells improves brain function after resuscitation from cardiac arrest. Crit Care Med. 36 (11 Suppl), S486-S491 (2008).
  72. Wang, T., et al. Improved outcomes of cardiopulmonary resuscitation in rats with myocardial infarction treated with allogenic bone marrow mesenchymal stem cells. Crit Care Med. 37 (3), 833-839 (2009).
  73. Wang, T., et al. Mesenchymal stem cells improve outcomes of cardiopulmonary resuscitation in myocardial infarcted rats. J Mol Cell Cardiol. 46 (3), 378-384 (2009).
  74. Lin, J. Y., et al. Model of cardiac arrest in rats by transcutaneous electrical epicardium stimulation. Resuscitation. 81 (9), 1197-1204 (2010).
  75. Dave, K. R., Della-Morte, D., Saul, I., Prado, R., Perez-Pinzon, M. A. Ventricular fibrillation-induced cardiac arrest in the rat as a model of global cerebral ischemia. Transl Stroke Res. 4 (5), 571-578 (2013).
  76. Chen, M. H., et al. A simpler cardiac arrest model in rats. Am J Emerg Med. 25 (6), 623-630 (2007).
  77. Gazmuri, R. J., Kube, E. Capnography during cardiac resuscitation: a clue on mechanisms and a guide to interventions. Crit Care. 7 (6), 411-412 (2003).
  78. Lee, H. B., Blaufox, M. D. Blood volume in the rat. J Nucl Med. 26 (1), 72-76 (1985).
  79. Bers, D. M., Bassani, J. W., Bassani, R. A. Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle. Ann N Y Acad Sci. 779, 430-442 (1996).
  80. Jasani, M. S., Salzman, S. K., Tice, L. L., Ginn, A., Nadkarni, V. M. Anesthetic regimen effects on a pediatric porcine model of asphyxial arrest. Resuscitation. 35 (1), 69-75 (1997).
  81. Kato, R., Foex, P. Myocardial protection by anesthetic agents against ischemia-reperfusion injury: an update for anesthesiologists. Can J Anaesth. 49 (8), 777-791 (2002).
check_url/52413?article_type=t

Play Video

Cite This Article
Lamoureux, L., Radhakrishnan, J., Gazmuri, R. J. A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique. J. Vis. Exp. (98), e52413, doi:10.3791/52413 (2015).

View Video