Summary

Un modelo de rata de la fibrilación ventricular y Reanimación por Convencional cerrado pecho Técnica

Published: April 26, 2015
doi:

Summary

This article describes a rat model of electrically-induced ventricular fibrillation and resuscitation by chest compression, ventilation, and delivery of electrical shocks that simulates an episode of sudden cardiac arrest and conventional cardiopulmonary resuscitation. The model enables gathering insights on the pathophysiology of cardiac arrest and exploration of new resuscitation strategies.

Abstract

A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes – but is not limited to – hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation.

Introduction

Cerca de 360,000 personas en los Estados Unidos 1 y muchos más en todo el mundo 2 sufren un episodio de paro cardiaco repentino cada año. Los intentos de restaurar la vida no requieren ser prevenidas sólo que la actividad cardiaca ser restablecido, pero que los daños en órganos vitales, reducen al mínimo, o se invierte. Las técnicas de reanimación cardiopulmonar actuales arrojan una tasa de resucitación inicial de aproximadamente 30%; Sin embargo, la supervivencia al alta hospitalaria es sólo el 5% 1. La disfunción miocárdica, disfunción neurológica, la inflamación sistémica, enfermedades intercurrentes, o una combinación de los mismos darse cuenta después de la reanimación de la gran proporción de los pacientes que mueren a pesar del retorno inicial de la circulación. Por lo tanto, una mayor comprensión de la fisiopatología y la novela de reanimación enfoques subyacentes se necesitan con urgencia para aumentar la velocidad de la reanimación inicial y posterior supervivencia con la función del órgano intacto.

Modo Animalls de arresto cardiaco tienen un papel crítico en el desarrollo de nuevas terapias de reanimación, proporcionando conocimientos sobre la fisiopatología de un paro cardíaco y la reanimación y ofrecer medios prácticos para conceptualizar y probar nuevas intervenciones antes de que puedan ser probados en humanos 3. El modelo de rata de tórax cerrado la reanimación cardiopulmonar (RCP) se describe aquí ha jugado un papel importante. El modelo fue desarrollado en 1988 por Irene von Planta – investigador en el momento – y sus colaboradores 4 en el laboratorio del fallecido profesor Max Harry Weil MD, Ph.D. en la Universidad de Ciencias de la Salud (rebautizada Rosalind Franklin de la Universidad de Medicina y Ciencia en 2004) y se ha utilizado ampliamente en el campo de la reanimación predominantemente por los becarios del profesor Weil y sus aprendices.

El modelo simula un episodio de parada cardíaca súbita con reanimación intentada por técnicas de RCP convencionales y por lo tanto incluye induction de fibrilación ventricular (VF) mediante la entrega de una corriente eléctrica al endocardio ventricular derecha y el suministro de CPR tórax cerrado por un dispositivo de pistón accionado neumáticamente mientras que concomitantemente la entrega de ventilación de presión positiva con gas enriquecido en oxígeno. La terminación de VF se logra mediante la entrega transtorácica de choques eléctricos. El modelo de rata establece un equilibrio entre los modelos desarrollados en los animales grandes (por ejemplo, cerdos) y modelos desarrollados en los animales más pequeños (por ejemplo, ratones) que permite la exploración de nuevos conceptos de investigación en una forma bien estandarizado, reproducible y eficiente con acceso a una robusta inventario de mediciones pertinentes. El modelo es particularmente útil en las primeras etapas de la investigación para explorar nuevos conceptos y examinar los efectos de los factores de confusión antes de la realización de estudios en modelos animales más grandes que son más costosas, pero de mayor impacto de la traducción.

Una búsqueda en Medline para todos los artículos revisados ​​por pares de informes comomodelo de rata imilar tener VF como el mecanismo de un paro cardíaco y algún tipo de reanimación tórax cerrado reveló un total de 69 estudios originales adicionales utilizando el modelo desde que se publicó por primera vez en 1988 4. Las áreas de investigación incluyen aspectos fisiopatológicos de reanimación 5-17, factores que influyen en los resultados de 18 a 30, el papel de las intervenciones farmacológicas que examinan agentes vasopresores 31-43, agentes tampón 44, 45 agentes inotrópicos, agentes destinados a infarto o protección cerebral 46-70, y también los efectos de las células madre mesenquimales 71-73.

El modelo y el protocolo descrito en este artículo está siendo usado actualmente en el Instituto de reanimación. Sin embargo, hay múltiples oportunidades para "personalizar" el modelo basado en las capacidades disponibles a los investigadores individuales y los objetivos de los estudios.

Protocol

NOTA: El protocolo fue aprobado por el Comité de Cuidado y Uso de Animales institucional a Rosalind Franklin de la Universidad de Medicina y Ciencia. Todos los procedimientos fueron realizados de acuerdo con la Guía para el Cuidado y Uso de Animales de Laboratorio publicados por el Consejo Nacional de Investigación. 1. Configuración Experimental y Anestesia Realizar calibraciones de las diversas señales que se capturaron utilizando un sistema de adquisición de datos…

Representative Results

El modelo de rata descrito aquí se utilizó recientemente para comparar los efectos de dos inhibidores de la sarcolema de sodio-hidrógeno intercambiador de isoforma 1 (NHE-1) sobre la función miocárdica y hemodinámica durante la compresión del pecho y post-resucitación 61. Se informó anteriormente que los inhibidores de NHE-1 atenúan la lesión por reperfusión miocárdica mediante la limitación citosólica sodio inducida y la sobrecarga de calcio mitocondrial, y por lo tanto ayudan a preservar la d…

Discussion

Pasos críticos en el protocolo

Hay pasos críticos en el protocolo. Cuando dominado, la preparación y el protocolo, intervenir describen como sucintamente a continuación. La preparación quirúrgica es rápida, avanzando rápidamente a través de catéteres de pequeñas incisiones de disparo mínima o ninguna espasmo de vaso y el posicionamiento de las puntas de catéter como se pretende, seguido de intubación traqueal con éxito después de una sola o unas pocas intento (s); po…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge Dr. Wanchun Tang MD, MCCM, FCCP, FAHA and Jena Cahoon of the Weil Institute of Critical Care Medicine in Rancho Mirage, CA. for their contributions to the resuscitation protocol outline and for having helped train the rodent surgeon (LL). The preparation of this article was in part supported by a gift in memory of US Navy Retired SKC Robert W. Ply by Ms. Monica Ply for research in heart disease and Parkinson’s disease and by a discretionary fund from the Department of Medicine at Rosalind Franklin University of Medicine and Science.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Sodium pentobarbital Sigma Aldrich P3761 http://www.sigmaaldrich.com/catalog/product/sigma/p3761?lang=en&region=US
Rectal thermistor BIOPAC Systems, INC TSD202A http://www.biopac.com/fast-response-thermistor
Needle electrode biopolar concentric 25 mm TP BIOPAC Systems, INC EL451 http://www.biopac.com/needle-electrode-concentric-25mm
PE25 polyethylene tubing  Solomon Scientific BPE-T25 http://www.solsci.com/products/polyethylene-pe-tubing
26GA female luer stub adapter Access Technologies LSA-26 http://www.norfolkaccess.com/needles.html
Stopcocks with luer connections; 3-way; male lock, non-sterile Cole-Parmer UX-30600-02 http://www.coleparmer.com/Product/Large_bore_3_way
_male_lock_stopcocks
_10_pack_Non_sterile/EW-30600-23
TruWave disposable pressure transducer Edwards Lifesciences PX600I  http://www.edwards.com/products/pressuremonitoring/Pages/truwavemodels.aspx?truwave=1
Type-T thermocouple Physitemp Instruments IT-18 http://www.physitemp.com/products/probesandwire/flexprobes.html
Central venous pediatric catheter  Cook Medical  C-PUM-301J https://www.cookmedical.com/product/-/catalog/display?ds=cc_pum1lp_webds
Abbocath-T subclavian I.V. catheter (14g x 5 1/2") Hospira 453527 http://www.hospira.com/products_and_services/iv_sets/045350427
Novametrix Medical Systems, Infrared CO2 monitor Soma Technology, Inc. 7100 CO2SMO  http://www.somatechnology.com/MedicalProducts/novametrix_respironics_co2smo_
7100.asp
Harvard Model 683 small animal ventilator Harvard Apparatus 555282 http://www.harvardapparatus.com/webapp/wcs/stores/servlet/haisku2_10001_11051_44453_-1_
HAI_ProductDetail_N_37322_37323
Double-flexible tipped wire guides Cook Medical  C-DOC-15-40-0-2 https://www.cookmedical.com/product/-/catalog/display?ds=cc_doc_webds
High accuracy AC LVDT displacement sensor Omega Engineering LD320-25 http://www.omega.com/pptst/LD320.html
HeartStart XL defibrillator/monitor Phillips Medical Systems M4735A http://www.healthcare.philips.com/main/products/resuscitation/products/xl/
Graefe micro dissection forceps 4 inches Roboz  RS-5135 http://shopping.roboz.com/Surgical-Instrument-Online-Shopping?search=RS-5135
Graefe micro dissection forceps 4 inches with teeth Roboz  RS-5157 http://shopping.roboz.com/Surgical-Instrument-Online-Shopping?search=RS-5157
Extra fine micro dissection scissors 4 inches Roboz  RS-5882 http://shopping.roboz.com/micro-scissors-micro-forceps-groups/micro-dissecting-scissors/Micro-Dissecting-Scissors-4-Straight-Sharp-Sharp
Heiss tissue retractor Fine Science Tools  17011-10 http://www.finescience.com/Special-Pages/Products.aspx?ProductId=321&CategoryId=134&
lang=en-US
Crile curve tip hemostats Fine Science Tools  13005-14 http://www.finescience.com/Special-Pages/Products.aspx?ProductId=372
Visistat skin stapler  Teleflex Incorporated 528135 http://www.teleflexsurgicalcatalog.com/weck/products/9936
Braided silk suture, 3-0 Harvard Apparatus 517706 http://www.harvardapparatus.com/webapp/wcs/stores/servlet/haisku2_10001_11051_43051_-1_
HAI_ProductDetail_N_37916_37936
Betadine solution Butler Schein 3660 https://www.henryscheinvet.com/
Sterile saline, 250 ml bags Fisher 50-700-069 http://www.fishersci.com/ecomm/servlet/itemdetail?catnum=50700069&storeId=10652
Heparin sodium injection, USP Fresenius Kabi 504201 http://fkusa-products-catalog.com/files/assets/basic-html/page25.html
Loxicom (meloxicam) Butler Schein 045-321 https://www.henryscheinvet.com/
Thermodilution cardiac output computer for small animals N/A N/A Custom-developed at the Resuscitation Institute using National Instruments hardware and LabVIEW software
Analog-to-digital data acquisition and analysis system N/A N/A Custom-developed at the Resuscitation Institute using National Instruments hardware and LabVIEW software
Pneumatically-driven and electronically controlled piston device for chest compression in small animals N/A N/A Custom-developed at the Weil Institute of Critical Care Medicine
60 Hz alternating current generator N/A N/A Custom-developed at the Weil Institute of Critical Care Medicine

References

  1. Go, A. S., et al. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 127 (1), e6-e245 (2013).
  2. Sans, S., Kesteloot, H., Kromhout, D. The burden of cardiovascular diseases mortality in Europe. Task Force of the European Society of Cardiology on Cardiovascular Mortality and Morbidity Statistics in Europe. Eur Heart J. 18 (12), 1231-1248 (1997).
  3. Becker, L. B., et al. The PULSE initiative: scientific priorities and strategic planning for resuscitation research and life saving therapies. Circulation. 105 (21), 2562-2570 (2002).
  4. Planta, I., et al. Cardiopulmonary resuscitation in the rat. J Appl Physiol. 65 (6), 2641-2647 (1988).
  5. Planta, I., Weil, M. H., von Planta, M., Gazmuri, R. J., Duggal, C. Hypercarbic acidosis reduces cardiac resuscitability. Crit Care Med. 19 (9), 1177-1182 (1991).
  6. Duggal, C., et al. Regional blood flow during closed-chest cardiac resuscitation in rats. J Appl Physiol. 74 (1), 147-152 (1993).
  7. Tang, W., Weil, M. H., Sun, S., Gazmuri, R. J., Bisera, J. Progressive myocardial dysfunction after cardiac resuscitation. Crit Care Med. 21 (7), 1046-1050 (1993).
  8. Sun, S., et al. Cardiac resuscitation by retroaortic infusion of blood. J Lab Clin Med. 123 (1), 81-88 (1994).
  9. Kamohara, T., et al. A comparison of myocardial function after primary cardiac and primary asphyxial cardiac arrest. Am J Respir Crit Care Med. 164 (7), 1221-1224 (2001).
  10. Fang, X., et al. Cardiopulmonary resuscitation in a rat model of chronic myocardial ischemia. J Appl Physiol. 101 (4), 1091-1096 (2006).
  11. Radhakrishnan, J., et al. Circulating levels of cytochrome c after resuscitation from cardiac arrest: a marker of mitochondrial injury and predictor of survival. Am J Physiol Heart Circ Physiol. 292 (2), H767-H775 (2007).
  12. Wang, S., et al. Limiting sarcolemmal Na+ entry during resuscitation from VF prevents excess mitochondrial Ca2+ accumulation and attenuates myocardial injury. J Appl Physiol. 103 (1), 55-65 (2007).
  13. Radhakrishnan, J., Ayoub, I. M., Gazmuri, R. J. Activation of caspase-3 may not contribute to postresuscitation myocardial dysfunction. Am J Physiol Heart Circ Physiol. 296 (4), H1164-H1174 (2009).
  14. Song, F., et al. Apoptosis is not involved in the mechanism of myocardial dysfunction after resuscitation in a rat model of cardiac arrest and cardiopulmonary resuscitation. Crit Care Med. 38 (5), 1329-1334 (2010).
  15. Fang, X., et al. Ultrastructural evidence of mitochondrial abnormalities in postresuscitation myocardial dysfunction. Resuscitation. 83 (3), 386-394 (2012).
  16. Jiang, J., et al. Impaired cerebral mitochondrial oxidative phosphorylation function in a rat model of ventricular fibrillation and cardiopulmonary resuscitation. Biomed Res Int. (192769), 1-9 (2014).
  17. Qian, J., et al. Post-resuscitation intestinal microcirculation: Its relationship with sublingual microcirculation and the severity of post-resuscitation syndrome. Resuscitation. 85 (6), 833-839 (2014).
  18. Noc, M., et al. Ventricular fibrillation voltage as a monitor of the effectiveness of cardiopulmonary resuscitation. J Lab Clin Med. 124 (3), 421-426 (1994).
  19. Noc, M., Weil, M. H., Sun, S., Tang, W., Bisera, J. Spontaneous gasping during cardiopulmonary resuscitation without mechanical ventilation. Am J Respir Crit Care Med. 150 (3), 861-864 (1994).
  20. Tang, W., et al. Cardiopulmonary resuscitation by precordial compression but without mechanical ventilation. Am J Respir Crit Care Med. 150 (3), 1709-1713 (1994).
  21. Duggal, C., Weil, M. H., Tang, W., Gazmuri, R. J., Sun, S. Effect of arrest time on the hemodynamic efficacy of precordial compression. Crit Care Med. 23 (7), 1233-1236 (1995).
  22. Fukui, M., Weil, M. H., Tang, W., Yang, L., Sun, S. Airway protection during experimental CPR [see comments. Chest. 108 (6), 1663-1667 (1995).
  23. Sato, Y., et al. Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation. Crit Care Med. 25 (5), 733-736 (1997).
  24. Xie, J., et al. High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation. 96 (2), 683-688 (1997).
  25. Ayoub, I. M., Brown, D. J., Gazmuri, R. J. Transtracheal oxygenation: an alternative to endotracheal intubation during cardiac arrest. Chest. 120 (5), 163-170 (2001).
  26. Kolarova, J., Ayoub, I. M., Yi, Z., Gazmuri, R. J. Optimal timing for electrical defibrillation after prolonged untreated ventricular fibrillation. Crit Care Med. 31 (7), 2022-2028 (2003).
  27. Song, F., et al. Delayed high-quality CPR does not improve outcomes. Resuscitation. 82 (Suppl 2), S52-S55 (2011).
  28. Sun, S., et al. Optimizing the duration of CPR prior to defibrillation improves the outcome of CPR in a rat model of prolonged cardiac arrest. Resuscitation. 82 (Suppl 2), S3-S7 (2011).
  29. Ye, S., et al. Comparison of the durations of mild therapeutic hypothermia on outcome after cardiopulmonary resuscitation in the rat. Circulation. 125 (1), 123-129 (2012).
  30. Fang, X., Huang, L., Sun, S., Weil, M. H., Tang, W. Outcome of prolonged ventricular fibrillation and CPR in a rat model of chronic ischemic left ventricular dysfunction. Biomed Res Int. 2013 (564501), 1-7 (2013).
  31. Tang, W., et al. Pulmonary ventilation/perfusion defects induced by epinephrine during cardiopulmonary resuscitation. Circulation. 84 (5), 2101-2107 (1991).
  32. Planta, I., Wagner, O., von Planta, M., Ritz, R. Determinants of survival after rodent cardiac arrest: implications for therapy with adrenergic agents. Int J Cardiol. 38, 235-245 (1993).
  33. Planta, I., Wagner, O., von Planta, M., Scheidegger, D. Coronary perfusion pressure, end-tidal CO2 and adrenergic agents in haemodynamic stable rats. Resuscitation. 25 (3), 203-217 (1993).
  34. Tang, W., et al. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation. 92 (10), 3089-3093 (1995).
  35. Pan, T., Chau, S., von, P. M., Studer, W., Scheidgger, D. An experimental comparative study on the characteristics of ventricular fibrillation during cardiac arrest and methoxamine administration. J Tongji Med Univ. 17 (2), 94-97 (1997).
  36. Pan, T., Zhou, S., Studer, W., von Planta, M., Scheidegger, D. Effect of different drugs on end-tidal carbon dioxide during rodent CPR. J Tongji Med Univ. 17 (4), 244-246 (1997).
  37. Sun, S., Weil, M. H., Tang, W., Povoas, H. P., Mason, E. Combined effects of buffer and adrenergic agents on postresuscitation myocardial function. J Pharmacol Exp Ther. 291 (2), 773-777 (1999).
  38. Sun, S., Weil, M. H., Tang, W., Kamohara, T., Klouche, K. alpha-Methylnorepinephrine, a selective alpha2-adrenergic agonist for cardiac resuscitation. J Am Coll Cardiol. 37 (3), 951-956 (2001).
  39. Studer, W., Wu, X., Siegemund, M., Seeberger, M. Resuscitation from cardiac arrest with adrenaline/epinephrine or vasopressin: effects on intestinal mucosal tonometer pCO(2) during the postresuscitation period in rats. Resuscitation. 53 (2), 201-207 (2002).
  40. Klouche, K., Weil, M. H., Sun, S., Tang, W., Zhao, D. H. A comparison of alpha-methylnorepinephrine, vasopressin and epinephrine for cardiac resuscitation. Resuscitation. 57 (1), 93-100 (2003).
  41. Cammarata, G., et al. Beta1-adrenergic blockade during cardiopulmonary resuscitation improves survival. Crit Care Med. 32 (9 Supppl), S440-S443 (2004).
  42. Huang, L., Weil, M. H., Cammarata, G., Sun, S., Tang, W. Nonselective beta-blocking agent improves the outcome of cardiopulmonary resuscitation in a rat model. Crit Care Med. 32 (9 Suppl), S378-S380 (2004).
  43. Sun, S., et al. The effects of epinephrine on outcomes of normothermic and therapeutic hypothermic cardiopulmonary resuscitation. Crit Care Med. 38 (11), 2175-2180 (2010).
  44. Sun, S., Weil, M. H., Tang, W., Fukui, M. Effects of buffer agents on postresuscitation myocardial dysfunction. Crit Care Med. 24 (12), 2035-2041 (1996).
  45. Studer, W., et al. Influence of dobutamine on the variables of systemic haemodynamics, metabolism, and intestinal perfusion after cardiopulmonary resuscitation in the rat. Resuscitation. 64 (2), 227-232 (2005).
  46. Planta, M., von Planta, I., Wagner, O., Scheidegger, D. Adenosine during cardiac arrest and cardiopulmonary resuscitation: a placebo-controlled, randomized trial. Crit Care Med. 20 (5), 645-649 (1992).
  47. Tang, W., Weil, M. H., Sun, S., Pernat, A., Mason, E. K(ATP) channel activation reduces the severity of postresuscitation myocardial dysfunction. Am J Physiol. 279 (4), (2000).
  48. Gazmuri, R. J., Ayoub, I. M., Hoffner, E., Kolarova, J. D. Successful ventricular defibrillation by the selective sodium-hydrogen exchanger isoform-1 inhibitor cariporide. Circulation. 104 (2), 234-239 (2001).
  49. Gazmuri, R. J., Ayoub, I. M., Kolarova, J. D., Karmazyn, M. Myocardial protection during ventricular fibrillation by inhibition of the sodium-hydrogen exchanger isoform-1. Crit Care Med. 30 (4 Suppl), S166-S171 (2002).
  50. Wann, S. R., Weil, M. H., Sun, S., T, T. a. n. g. ,. W. .. ,. &. a. m. p. ;. P. e. l. l. i. s. ,. Pharmacologic defibrillation. Crit Care Med. 30 (4 Suppl), S154-S156 (2002).
  51. Sun, S., Weil, M. H., Tang, W., Kamohara, T., Klouche, K. Delta-opioid receptor agonist reduces severity of postresuscitation myocardial dysfunction. Am J Physiol. 287 (2), H969-H974 (2004).
  52. Wang, J., et al. A lazaroid mitigates postresuscitation myocardial dysfunction. Crit Care Med. 32 (2), 553-558 (2004).
  53. Huang, L., et al. Levosimendan improves postresuscitation outcomes in a rat model of CPR. J Lab Clin Med. 146 (5), 256-261 (2005).
  54. Kolarova, J., Yi, Z., Ayoub, I. M., Gazmuri, R. J. Cariporide potentiates the effects of epinephrine and vasopressin by nonvascular mechanisms during closed-chest resuscitation. Chest. 127 (4), 1327-1334 (2005).
  55. Kolarova, J. D., Ayoub, I. M., Gazmuri, R. J. Cariporide enables hemodynamically more effective chest compression by leftward shift of its flow-depth relationship. Am J Physiol Heart Circ Physiol. 288 (6), H2904-H2911 (2005).
  56. Fang, X., et al. Mechanism by which activation of delta-opioid receptor reduces the severity of postresuscitation myocardial dysfunction. Crit Care Med. 34 (10), 2607-2612 (2006).
  57. Singh, D., Kolarova, J. D., Wang, S., Ayoub, I. M., Gazmuri, R. J. Myocardial protection by erythropoietin during resuscitation from ventricular fibrillation. Am J Ther. 14 (4), 361-368 (2007).
  58. Shan, Y., Sun, S., Yang, X., Weil, M. H., Tang, W. Opioid receptor agonist reduces myocardial ischemic injury when administered during early phase of myocardial ischemia. Resuscitation. 81 (6), 761-765 (2010).
  59. Sun, S., et al. Pharmacologically induced hypothermia with cannabinoid receptor agonist WIN55, 212-2 after cardiopulmonary resuscitation. Crit Care Med. 38 (12), 2282-2286 (2010).
  60. Chung, S. P., et al. Effect of therapeutic hypothermia vs delta-opioid receptor agonist on post resuscitation myocardial function in a rat model of CPR. Resuscitation. 82 (3), 350-354 (2011).
  61. Radhakrishnan, J., Kolarova, J. D., Ayoub, I. M., Gazmuri, R. J. AVE4454B–a novel sodium-hydrogen exchanger isoform-1 inhibitor–compared less effective than cariporide for resuscitation from cardiac arrest. Transl Res. 157 (2), 71-80 (2011).
  62. Tsai, M. S., et al. Ascorbic acid mitigates the myocardial injury after cardiac arrest and electrical shock. Intensive Care Med. 37 (12), 2033-2040 (2011).
  63. Weng, Y., et al. Cholecystokinin octapeptide induces hypothermia and improves outcomes in a rat model of cardiopulmonary resuscitation. Crit Care Med. 39 (11), 2407-2412 (2011).
  64. Hayashida, K., et al. H(2) gas improves functional outcome after cardiac arrest to an extent comparable to therapeutic hypothermia in a rat model. J Am Heart Assoc. 1 (5), e003459-e003459 (2012).
  65. Motl, J., Radhakrishnan, J., Ayoub, I. M., Grmec, S., Gazmuri, R. J. Vitamin C compromises cardiac resuscitability in a rat model of ventricular fibrillation. Am J Ther. Jun. 16, (2012).
  66. Weng, Y., et al. Cannabinoid 1 (CB1) receptor mediates WIN55, 212-2 induced hypothermia and improved survival in a rat post-cardiac arrest model. Resuscitation. 83 (9), 1145-1151 (2012).
  67. Radhakrishnan, J., et al. Erythropoietin facilitates resuscitation from ventricular fibrillation by signaling protection of mitochondrial bioenergetic function in rats. Am J Transl Res. 5 (3), 316-326 (2013).
  68. Rungatscher, A., et al. Cardioprotective effect of delta-opioid receptor agonist vs. mild therapeutic hypothermia in a rat model of cardiac arrest with extracorporeal life support. Resuscitation. 84 (2), 244-248 (2013).
  69. Ma, L., Lu, X., Xu, J., Sun, S., Tang, W. Improved cardiac and neurologic outcomes with postresuscitation infusion of cannabinoid receptor agonist WIN55, 212-2 depend on hypothermia in a rat model of cardiac arrest. Crit Care Med. 42 (1), 42-48 (2014).
  70. Tsai, M. S., et al. Combination of intravenous ascorbic acid administration and hypothermia after resuscitation improves myocardial function and survival in a ventricular fibrillation cardiac arrest model in the rat. Acad Emerg Med. 21 (3), 257-265 (2014).
  71. Wang, T., et al. Intravenous infusion of bone marrow mesenchymal stem cells improves brain function after resuscitation from cardiac arrest. Crit Care Med. 36 (11 Suppl), S486-S491 (2008).
  72. Wang, T., et al. Improved outcomes of cardiopulmonary resuscitation in rats with myocardial infarction treated with allogenic bone marrow mesenchymal stem cells. Crit Care Med. 37 (3), 833-839 (2009).
  73. Wang, T., et al. Mesenchymal stem cells improve outcomes of cardiopulmonary resuscitation in myocardial infarcted rats. J Mol Cell Cardiol. 46 (3), 378-384 (2009).
  74. Lin, J. Y., et al. Model of cardiac arrest in rats by transcutaneous electrical epicardium stimulation. Resuscitation. 81 (9), 1197-1204 (2010).
  75. Dave, K. R., Della-Morte, D., Saul, I., Prado, R., Perez-Pinzon, M. A. Ventricular fibrillation-induced cardiac arrest in the rat as a model of global cerebral ischemia. Transl Stroke Res. 4 (5), 571-578 (2013).
  76. Chen, M. H., et al. A simpler cardiac arrest model in rats. Am J Emerg Med. 25 (6), 623-630 (2007).
  77. Gazmuri, R. J., Kube, E. Capnography during cardiac resuscitation: a clue on mechanisms and a guide to interventions. Crit Care. 7 (6), 411-412 (2003).
  78. Lee, H. B., Blaufox, M. D. Blood volume in the rat. J Nucl Med. 26 (1), 72-76 (1985).
  79. Bers, D. M., Bassani, J. W., Bassani, R. A. Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle. Ann N Y Acad Sci. 779, 430-442 (1996).
  80. Jasani, M. S., Salzman, S. K., Tice, L. L., Ginn, A., Nadkarni, V. M. Anesthetic regimen effects on a pediatric porcine model of asphyxial arrest. Resuscitation. 35 (1), 69-75 (1997).
  81. Kato, R., Foex, P. Myocardial protection by anesthetic agents against ischemia-reperfusion injury: an update for anesthesiologists. Can J Anaesth. 49 (8), 777-791 (2002).
check_url/52413?article_type=t

Play Video

Cite This Article
Lamoureux, L., Radhakrishnan, J., Gazmuri, R. J. A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique. J. Vis. Exp. (98), e52413, doi:10.3791/52413 (2015).

View Video