Summary

Een vergelijkende analyse van recombinant eiwit expressie in verschillende biofactories: Bacteriën, Insect Cells and Plant Systems

Published: March 23, 2015
doi:

Summary

In this study the expression of a target human recombinant protein in different production platforms was compared. We focused on traditional fermenter-based cultures and on plants, describing the set-up of each system and highlighting, on the basis of the reported results, the inherent limits and advantages for each platform.

Abstract

Plantaardige systemen worden beschouwd als een waardevol platform voor de productie van recombinante eiwitten ten gevolge van hun goed gedocumenteerde potentieel voor de flexibele, goedkope productie van hoogwaardige biologisch actieve producten.

In deze studie hebben we de expressie van een doelwit menselijk recombinant eiwit in traditionele fermentatie gebaseerde celkweken (bacteriën en insecten) met plantaardige expressiesystemen, zowel transiënte en stabiele.

Voor elk platform, beschrijven we de opzet optimalisatie en lengte van het productieproces kan de uiteindelijke kwaliteit van het product en de opbrengst en we voorlopig productiekosten, specifiek voor het gekozen doelwit recombinante eiwit geëvalueerd.

Kortom, onze resultaten aan dat bacteriën niet voor de bereiding van het doeleiwit door de ophoping ervan in onoplosbare inclusielichamen. Anderzijds, plantaardige systemen zijn veelzijdig platforms thoed kan de productie van het geselecteerde eiwit tegen lagere kosten dan baculovirus / insectencel-systeem. Vooral stabiele transgene lijnen toonde de hoogste opbrengst van het eindproduct en voorbijgaande expressie planten de snelste procesontwikkeling. Kunnen echter niet alle recombinante eiwitten profiteren van plantaardige systemen, maar de beste productie platform moet empirisch worden bepaald met een case-by-case benadering, zoals hier beschreven.

Introduction

Recombinant proteins are commercially mass-produced in heterologous expression systems with the aid of emerging biotechnology tools. Key factors that have to be considered when choosing the heterologous expression system include: protein quality, functionality, process speed, yield and cost.

In the recombinant protein field, the market for pharmaceuticals is expanding rapidly and, consequently, most biopharmaceuticals produced today are recombinant. Proteins can be expressed in cell cultures of bacteria, yeasts, molds, mammals, plants and insects, as well as in plant systems (either via stable- or transient-transformation) and transgenic animals; each expression system has its inherent advantages and limitations and for each target recombinant protein the optimal production system has to be carefully evaluated.

Plant-based platforms are arising as an important alternative to traditional fermenter-based systems for safe and cost-effective recombinant protein production. Although downstream processing costs are comparable to those of microbial and mammalian cells, the lower up-front investment required for commercial production in plants and the potential economy of scale, provided by cultivation over large areas, are key advantages.

We evaluated plants as bioreactors for the expression of the 65 kDa isoform of human glutamic acid decarboxylase (hGAD65), one of the major autoantigen in Type 1 autoimmune diabetes (T1D). hGAD65 is largely adopted as a marker, both for classifying and monitoring the progression of the disease and its role in T1D prevention is currently under investigation in clinical trials. If these trials are successful, the global demand for recombinant hGAD65 will increase dramatically.

Here, we focus on the expression of the enzymatically inactive counterpart of hGAD65, hGAD65mut, a mutant generated by substituting the lysine residue that binds the cofactor PLP (pyridoxal-5′-phosphate) with an arginine residue (K396R)1.

hGAD65mut retains its immunogenicity and, in plant and insect cells, accumulates up to ten-fold higher than hGAD65, its wild-type counterpart. It was hypothesized that the enzymatic activity of hGAD65 interferes with plant cell metabolism to such an extent that it suppresses its own synthesis, whereas hGAD65mut, the enzymatically-inactive form, can be accumulated in plant cells to higher levels.

For the expression of hGAD65mut, the use of different technologies, widely used in plant biotechnology, was explored here and compared to traditional expression platforms (Escherichia coli and Baculovirus/insect cell-based).

In this work, the recombinant platforms developed for the expression of hGAD65mut comprising traditional and plant-based systems were reviewed and compared on the basis of process speed and yield, and of final product quality and functionality.

Protocol

1. Bouw van Expression Vectoren Commerciële recombinatie kloneringssysteem: Versterken van de volledige lengte sequentie van het doelwitgen (hGAD65mut) met geschikte primers waarbij toevoeging van een CACC klem aan het 5'-uiteinde van het gen zoals eerder beschreven 2. Kloon de gel-gezuiverde amplificatieproduct volgens de gerichte klonering kit specificaties in de vermelding vector (topoisomerase gebonden) door het samenvoegen van de reactie in een totaal volume van 6 pl, m…

Representative Results

Een experimenteel ontwerp voor de heterologe expressie van een doel recombinant proteïne in verschillende productiesystemen wordt beschreven. De eerste focus lag de set-up van de verschillende platformen door de oprichting van de optimale omstandigheden voor de expressie van het doelwit eiwit in elk systeem. De expressie van het doeleiwit, hGAD65mut, geïnduceerd in drievoud E. coli kweken. Na 3 uur van expressie bij 37 ° C werden de bacteriële cellen verzameld door centrifugeren…

Discussion

In deze studie werden drie verschillende platforms vergeleken voor de expressie van een recombinant humaan eiwit: bacteriële cellen, met baculovirus / insectencellen en planten. De plantaardige platform werd verder onderzocht door de exploitatie van drie veel gebruikte technologieën expressie (dat wil zeggen, van voorbijgaande aard – MagnICON en pK7WG2 basis – en stabiel). Het doeleiwit voor dit experiment gekozen, hGAD65mut, eerder uitgedrukt in verschillende systemen 13, en de productie en functi…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the COST action ‘Molecular pharming: Plants as a production platform for high-value proteins’ FA0804. The Authors thank Dr Anatoli Giritch and Prof. Yuri Gleba for providing the MagnICON vectors for research purposes.

Materials

Yeast extract Sigma  Y1333 
Tryptone  Formedium  TRP03 
Agar Bacteriological Grade  Applichem  A0949 
Sf-900 II SFM medium Gibco  10902-088
Grace’s Insect Medium, unsupplemented  Gibco  11595-030 
Cellfectin II Reagent Invitrogen 10362-100
MS medium including vitamins Duchefa Biochemie  M0222
Sucrose Duchefa Biochemie  S0809
Plant agar Duchefa Biochemie  P1001
Ampicillin sodium Duchefa Biochemie  A0104 Toxic
Gentamycin sulphate Duchefa Biochemie  G0124 Toxic
Ganciclovir Invitrogen I2562-023
Carbenicillin disodium Duchefa Biochemie  C0109 Toxic 
Kanamycin sulfate Sigma K4000 Toxic 
Rifampicin Duchefa Biochemie  R0146 Toxic – 25 mg/ml stock in DMSO
Streptomycin  sulfate Duchefa Biochemie  S0148 Toxic 
Spectinomycin  dihydrochloride  Duchefa Biochemie  S0188
IPTG (Isopropil-β-D-1-tiogalattopiranoside)  Sigma  I5502  Toxic 
MES hydrate Sigma M8250
MgCl2  Biochemical 436994U
Acetosyringone  Sigma D134406 Toxic – 0.1 M stock in DMSO
Syringe (1 ml) Terumo
MgSO4  Fluka  63136
BAP                                                       (6-Benzylaminopurine)  Sigma  B3408  Toxic 
NAA (Naphtalene acetic acid)  Duchefa Biochemie  N0903  Irritant 
Cefotaxime  Mylan generics 
Trizma base Sigma T1503 Adjust pH with 1 N HCl to make Tris-HCl buffer
HCl  Sigma H1758 Corrosive 
NaCl Sigma S3014 1 M stock
KCl Sigma P9541
Na2HPO4 Sigma S7907
KH2PO4 Sigma P9791
PMSF (Phenylmethanesulfonylfluoride) Sigma P7626 Corrosive,  toxic
Urea Sigma U5378
β-mercaptoethanol  Sigma M3148 Toxic 
Tween-20 Sigma P5927
Hepes Sigma H3375
DTT (Dithiothreitol)  Sigma D0632 Toxic – 1 M stock, store at -20 °C
CHAPS Duchefa Biochemie  C1374 Toxic 
Plant protease inhibitor cocktail Sigma P9599 Do not freeze/thaw too many times
SDS (Sodium dodecyl sulphate) Sigma L3771 Flammable, toxic, corrosive – 10% stock
Glycerol Sigma G5516
Brilliant Blue R-250 Sigma B7920
Isopropanol Sigma 24137 Flammable
Acetic acid Sigma 27221 Corrosive
Anti-Glutamic acid decarboxylase 65/67 Sigma G5163 Do not freeze/thaw too many times
Horseradish peroxidase (HRP)-conjugate anti-rabbit antibody Sigma A6154 Do not freeze/thaw too many times
Sf9 Cells Life Technologies 11496
BL21 Competent E.coli New England Biolabs C2530H
Protein A Sepharose Sigma P2545
Cell culture plates  Sigma CLS3516
Radio Immuno Assay kit Techno Genetics 12650805 Radioactive material 

References

  1. Hampe, C. S., Hammerle, L. P., Falorni, A., Robertson, J., Lernmark, A. Site-directed mutagenesis of K396R of the 65 kDa glutamic acid decarboxylase active site obliterates enzyme activity but not antibody binding. FEBS Lett. 488 (3), 185-189 (2001).
  2. Avesani, L., et al. Recombinant human GAD65 accumulates to high levels in transgenic tobacco plants when expressed as an enzymatically inactive mutant. Plant Biotechnol. J. 9 (8), 862-872 (2010).
  3. Sambrook, J., et al. . Molecular Cloning: A laboratory manual. Second Edition. , (1989).
  4. Avesani, L., et al. Comparative analysis of different biofactories for the production of a major diabetes autoantigen. Transgenic Res. 23, 281-291 (2014).
  5. Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V., Gleba, Y. In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc. Natl. Acad. Sci. (USA). 101 (18), 6852-6857 (2004).
  6. Gleba, Y., Klimyuk, V., Marillonnet, S. Viral vectors for the expression of proteins in plants). Curr. Opin. Biotechnol. 18, 134-141 (2007).
  7. Engler, C., Kandzia, R., Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 3 (11), (2008).
  8. Xu, R., Li, Q. Q. Protocol: streamline cloning of genes into binary vectors in Agrobacterium via the Gateway TOPO vector system. Plant Methods. 4 (4), 1-7 (2008).
  9. Fairbanks, G., Steck, T. L., Wallach, D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 10 (13), 2606-2617 (1971).
  10. Falorni, A., et al. Radioimmunoassay detects the frequent occurrence of autoantibodies to the Mr 65,000 isoform of glutamic acid decarboxylase in Japanese insulin-dependent diabetes. Autoimmunity. 19, 113-125 (1994).
  11. Hunt, I. From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr. Purif. 40 (1), 1-22 (2005).
  12. Arzola, L., et al. Transient co-expression of post-transcriptional silencing suppressor for increased in planta expression of a recombinant anthrax receptor fusion protein. Int. J. Mol. Sci. 12 (8), 4975-4990 (2011).
  13. Merlin, M., Gecchele, E., Capaldi, S., Pezzotti, M., Avesani, L. Comparative evaluation of recombinant protein production in different biofactories: the green perspective. Biomed. Res. Int. 2014, 136419 (2014).
  14. Avesani, L., et al. Improved in planta expression of the human islet autoantigen glutamic acid decarboxylase (GAD65). Transgenic Res. 12 (2), 203-212 (2003).
  15. Leuzinger, K., et al. Efficient agroinfiltration of Plants for high-level transient expression of recombinant proteins. J Vis Exp. (77), (2013).

Play Video

Cite This Article
Gecchele, E., Merlin, M., Brozzetti, A., Falorni, A., Pezzotti, M., Avesani, L. A Comparative Analysis of Recombinant Protein Expression in Different Biofactories: Bacteria, Insect Cells and Plant Systems. J. Vis. Exp. (97), e52459, doi:10.3791/52459 (2015).

View Video