Summary

माउस रीढ़ की हड्डी में सेलुलर गतिशीलता के दो photon इमेजिंग

Published: February 22, 2015
doi:

Summary

माउस रीढ़ की हड्डी इमेजिंग के लिए एक नया पूर्व vivo तैयारी। इस प्रोटोकॉल रीढ़ की हड्डी के दौरान लाइव सेलुलर बातचीत की दो photon इमेजिंग के लिए अनुमति देता है।

Abstract

Two-photon (2P) microscopy is utilized to reveal cellular dynamics and interactions deep within living, intact tissues. Here, we present a method for live-cell imaging in the murine spinal cord. This technique is uniquely suited to analyze neural precursor cell (NPC) dynamics following transplantation into spinal cords undergoing neuroinflammatory demyelinating disorders. NPCs migrate to sites of axonal damage, proliferate, differentiate into oligodendrocytes, and participate in direct remyelination. NPCs are thereby a promising therapeutic treatment to ameliorate chronic demyelinating diseases. Because transplanted NPCs migrate to the damaged areas on the ventral side of the spinal cord, traditional intravital 2P imaging is impossible, and only information on static interactions was previously available using histochemical staining approaches. Although this method was generated to image transplanted NPCs in the ventral spinal cord, it can be applied to numerous studies of transplanted and endogenous cells throughout the entire spinal cord. In this article, we demonstrate the preparation and imaging of a spinal cord with enhanced yellow fluorescent protein-expressing axons and enhanced green fluorescent protein-expressing transplanted NPCs.

Introduction

प्रयोगात्मक स्व-प्रतिरक्षित इंसेफैलोमाईलिटिस (EAE) और neuroadapted माउस हेपेटाइटिस वायरस (MHV) के साथ intracranial संक्रमण सहित demyelination के माउस मॉडल, आणविक रास्ते और रोग के साथ जुड़े सेलुलर बातचीत का अध्ययन करने के लिए उत्कृष्ट उपकरण हैं। वे करने के लिए नेतृत्व और एफडीए की प्रभावशीलता को मुख्य रूप से औतोइम्मुिनित सूजन 1 की समाप्ति को लक्षित, दवा के उपचारों को मंजूरी दे दी समर्थन किया है। अंतर्जात remyelination में नाकाम रही है हालांकि, एक बार, वर्तमान में अनुमोदित उपचारों को प्रभावी ढंग से केंद्रीय तंत्रिका तंत्र में demyelinated घावों की मरम्मत नहीं है। इसलिए, रोग के इस स्तर पर मरम्मत केंद्रित उपचारों जीर्ण लक्षण और जीवन की गुणवत्ता के सुधार के उन्मूलन के लिए महत्वपूर्ण हैं। हाल ही में, तंत्रिका अग्रदूत कोशिकाओं (NPCs) सूजन और demyelination के क्षेत्रों को लक्षित करने के लिए एक संभावित पुनर्योजी चिकित्सीय साधन के रूप में सबसे आगे आ गए हैं। कई अध्ययनों से endogeno प्रेरित करने के लिए NPCs की क्षमता पर प्रकाश डाला हैहमें remyelination और remyelination 2-8 में सीधे भाग लेते हैं। NPCs के प्रत्यक्ष remyelination में शामिल कर रहे हैं, क्योंकि यह प्रत्यारोपण निम्नलिखित अंतर्जात कोशिकाओं के साथ उनके कैनेटीक्स और बातचीत को समझने के लिए जरूरी है। प्रत्यारोपण के बाद, NPCs तो rostrally और प्रत्यारोपण साइट 5,9 करने के लिए दुमदारी रिश्तेदार सफेद पदार्थ की क्षति के क्षेत्रों के लिए पेट के बल आ जाते हैं। माइग्रेशन के कैनेटीक्स पर्यावरण संकेतों के जवाब में भिन्न होते हैं; एक गैर क्षतिग्रस्त रीढ़ की हड्डी में प्रत्यारोपित NPCs के एक क्षतिग्रस्त रीढ़ की हड्डी 6 में प्रतिरोपित NPCs के अधिक से अधिक वेग है। एक प्रवासी अवधि के बाद, एक अक्षुण्ण रीढ़ की हड्डी से 6 एक क्षतिग्रस्त रीढ़ की हड्डी के सापेक्ष में एक उच्च दर पर, NPCs के बड़े पैमाने पर पैदा स्थानांतरित कर दिया। अंत में, NPCs के बहुमत oligodendrocytes में अंतर और प्रत्यक्ष remyelination 4,6,9 आरंभ करें।

demyelinated घाव जटिल है और एक के विभिन्न चरणों में कोशिकाओं की एक विविध आबादी शामिल कर सकते हैंctivation। उदाहरण के लिए, एक सक्रिय मल्टिपल स्क्लेरोसिस (एमएस) घाव सक्रिय टी कोशिकाओं, एम 1 microglia और एम 1 मैक्रोफेज, लेकिन एक पुरानी चुप एमएस घाव मुख्य रूप से कुछ भड़काऊ कोशिकाओं 10-13 के साथ प्रतिक्रियाशील astrocytes के शामिल किया जा सकता है की एक महत्वपूर्ण आबादी शामिल हो सकते हैं। क्योंकि प्रेरक कोशिकाओं की विविधता के कारण, demyelination के माउस मॉडल में दो-फोटान (2P) इमेजिंग घाव के भीतर स्थानीय सेलुलर बातचीत को समझने में मदद करने के लिए एक बहुत ही उपयोगी उपकरण है। एमएस और कई बड़े पैमाने पर इस्तेमाल एमएस अनुसंधान मॉडल में, घावों का बहुमत होने के कारण घाव गहराई और रीढ़ की हड्डी के उच्च लिपिड सामग्री के लिए रीढ़ की हड्डी, intravital 2P इमेजिंग के लिए दुर्गम क्षेत्र के उदर पक्ष पर स्थित हैं। उदर रीढ़ की हड्डी के साथ घावों के भीतर इन मुद्दों और अध्ययन सेल सेल बातचीत नाकाम करने के लिए हम पूर्व vivo 2P इमेजिंग तैयारी 6 एक सरल विकसित किया है।

इस अध्ययन से पता चला है, जो पिछले एक विधियों प्रकाशन, ऊपर इस प्रकार हैMHV प्रेरित demyelination 14 की JHMV तनाव निम्नलिखित चूहों की रीढ़ की हड्डी में बढ़ाया हरी फ्लोरोसेंट प्रोटीन (EGFP) -expressing NPCs के रोपाई के लिए प्रक्रिया। पांच सप्ताह पुरानी चूहों JHMV से संक्रमित हैं और 14 दिन के बाद संक्रमण पर वक्ष 9 स्तर पर EGFP-NPCs के साथ प्रतिरोपित कर रहे हैं। यहाँ प्रस्तुत प्रोटोकॉल एक पूर्व vivo agarose तैयारी कर, रीढ़ की हड्डी निकालने, और बढ़ाया पीले फ्लोरोसेंट प्रोटीन (EYFP) -expressing axons के साथ छवि प्रत्यारोपित EGFP-एनपीसी बातचीत करने के तरीके पर विस्तृत कदम प्रदान करता है। न्यूरोनल-विशिष्ट Thy1 प्रमोटर के तहत EYFP व्यक्त चूहे इस प्रक्रिया में 15 में इस्तेमाल किया गया। केवल axons की कुछ व्यक्तिगत एक्सोन इमेजिंग के लिए यह उपयोगी है, जिससे EYFP व्यक्त करते हैं। यहाँ हम 7 दिनों के बाद प्रत्यारोपण पर हटाया रीढ़ की हड्डी डोरियों दिखाने; हालांकि, रीढ़ की हड्डी डोरियों प्रत्यारोपण के बाद किसी भी समय बिंदु पर निकाला जा सकता है। हम क्षतिग्रस्त axons के साथ NPCs के बातचीत प्रदर्शित करते हैं, हमारे प्रोटोकॉल आनुवंशिक फ्लोरोसेंट मार्कर के साथ संयोजन में उपयोग किया जा सकता हैअन्य प्रकार की कोशिकाओं का माउस रीढ़ की हड्डी के दौरान होने वाली बातचीत सेलुलर के एक भीड़ जांच करने के लिए।

Protocol

नोट: आचार कथन: जानवर से निपटने के लिए प्रोटोकॉल कैलिफोर्निया, इरविन, प्रोटोकॉल # 2010-2943 विश्वविद्यालय की संस्थागत पशु की देखभाल और उपयोग समिति (IACUC) द्वारा अनुमोदित किया गया था। स्पाइनल कॉर्ड 1. नि?…

Representative Results

Explanted रीढ़ की हड्डी इमेजिंग प्रोटोकॉल रीढ़ की हड्डी के भीतर किसी भी प्रतिदीप्ति कल्पना करने के लिए इस्तेमाल किया जा सकता है, हमारे प्रतिनिधि परिणाम EYFP-axons के साथ EGFP-एनपीसी बातचीत प्रदर्शित करता है। सबसे …

Discussion

रियल-टाइम बरकरार ऊतक के 2P इमेजिंग demyelinated माउस रीढ़ की हड्डी में प्रत्यारोपण निम्नलिखित एनपीसी कैनेटीक्स और बातचीत की जांच करने के लिए आवश्यक है। Intravital 2P इमेजिंग आमतौर पर रहने वाले चूहों में रीढ़ की हड्डी ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported in part by National Institutes of Health (NIH) Grants R01 GM-41514 (to M.D.C.), R39 GM-048071 (to I.P.), and R01 NS-074987 (to T.E.L.) and the National Multiple Sclerosis Society (NMSS) Collaborative Center Research Award CA1058-A-8 (to C.M.W., T.E.L. and M.D.C.), NMSS Grant RG4925, NIH Training Grant T32-AI-060573 (to M.L.G.), NMSS Postdoctoral Fellowship FG 1960-A-1 (to J.G.W.), and funding from the George E. Hewitt Foundation for Medical Research (M.P.M.).

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
Isoflurane, USP Piramal Critical Care, Inc N/A
Fine scissors Fine Science Tools 14060-09 sharp
scalpel blade #10 Fine Science Tools 10010-00
scalpel handle Fine Science Tools 10003-12
Luer rongeurs Fine Science Tools 16001-15
Graefe forceps Fine Science Tools 11052-10
Vannas scissors Fine Science Tools 15615-08
scalpel blade #11 Fine Science Tools 10011-00
RPMI-1640 Gibco 12-115F
agarose, low gelling temperature Sigma A9414-25G
Parafilm Fisher Scientific 13-374-12
Vetbond (tissue adhesive) 3M 1469SB
22 mm square cover slip Fisher Scientific 12-547
25x dipping objective, 1.1 NA Nikon CFI Apo LWD 25XW
Single inline solution heater Warner Instruments 64-0102
520 nm single-edge dichroic beam splitter Semrock FF520-Di02-25×36 Brightline
560 nm single-edge dichroic beam splitter Semrock FF560-FDi01-25×36 Brightline
photomultiplier tubes Hamamatsu R928
C/L variable-speed tubing pump Masterflex 77122-22
digital thermometer Comar Instruments 3501
Chameleon Ultra Ti:Sapphire laser  Coherent N/A
Slidebook 6 software 3i N/A
Imaris 7.7 software Bitplane N/A

References

  1. Robinson, A. P., Harp, C. T., Noronha, A., Miller, S. D. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol. 122, 173-189 (2014).
  2. Pluchino, S., Zanotti, L., Brini, E., Ferrari, S., Martino, G. Regeneration and repair in multiple sclerosis: the role of cell transplantation. Neurosci Lett. 456 (3), 101-106 (2009).
  3. Hatch, M. N., Schaumburg, C. S., Lane, T. E., Keirstead, H. S. Endogenous remyelination is induced by transplant rejection in a viral model of multiple sclerosis. J Neuroimmunol. 212 (1-2), 74-81 (2009).
  4. Totoiu, M. O., Nistor, G. I., Lane, T. E., Keirstead, H. S. Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Exp Neurol. 187 (2), 254-265 (2004).
  5. Tirotta, E., Carbajal, K. S., Schaumburg, C. S., Whitman, L., Lane, T. E. Cell replacement therapies to promote remyelination in a viral model of demyelination. J Neuroimmunol. 224 (1-2), 101-107 (2010).
  6. Greenberg, M. L., et al. Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis. Proc Natl Acad Sci U S A. 111 (22), E2349-E2355 (2014).
  7. Whitman, L. M., Blanc, C. A., Schaumburg, C. S., Rowitch, D. H., Lane, T. E. Olig1 function is required for remyelination potential of transplanted neural progenitor cells in a model of viral-induced demyelination. Exp Neurol. 235 (1), 380-387 (2012).
  8. Pluchino, S., et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature. 422 (6933), 688-694 (2003).
  9. Weinger, J. G., et al. MHC mismatch results in neural progenitor cell rejection following spinal cord transplantation in a model of viral-induced demyelination. Stem Cells. 30 (11), 2584-2595 (2012).
  10. Vogel, D. Y., et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation. 10, 35 (2013).
  11. Coyle, P. K., Rizvi, S. A., Coyle, P. K. Ch. 3. Clinical Neuroimmunology: Multiple Sclerosis and Related Disorders. 3, 43-70 (2011).
  12. McManus, C., et al. MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol. 86 (1), 20-29 (1998).
  13. Calderon, T. M., et al. A role for CXCL12 (SDF-1alpha) in the pathogenesis of multiple sclerosis: regulation of CXCL12 expression in astrocytes by soluble myelin basic protein. J Neuroimmunol. 177 (1-2), 27-39 (2006).
  14. Carbajal, K. S., Weinger, J. G., Whitman, L. M., Schaumburg, C. S., Lane, T. E. Surgical transplantation of mouse neural stem cells into the spinal cords of mice infected with neurotropic mouse hepatitis virus. J Vis Exp. 53, e2834 (2011).
  15. Feng, G., et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 28 (1), 41-51 (2000).
  16. Nguyen, Q. T., Callamaras, N., Hsieh, C., Parker, I. Construction of a two-photon microscope for video-rate Ca(2+) imaging. Cell Calcium. 30 (6), 383-393 (2001).
  17. Nikic, I., et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med. 17 (4), 495-499 (2011).
  18. Fenrich, K. K., Weber, P., Rougon, G., Debarbieux, F. Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis. J Vis Exp. 82, e50826 (2013).
  19. Farrar, M. J., et al. Chronic in vivo imaging in the mouse spinal cord using an implanted chamber. Nat Methods. 9 (3), 297-302 (2012).
  20. Pakan, J. M., McDermott, K. W. A method to investigate radial glia cell behavior using two-photon time-lapse microscopy in an ex vivo model of spinal cord development. Front Neuroanat. 8, 22 (2014).
  21. Fenrich, K. K., et al. Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows. J Physiol. 590 (Pt 16), 3665-3675 (2012).
  22. Germain, R. N., Robey, E. A., Cahalan, M. D. A decade of imaging cellular motility and interaction dynamics in the immune system. Science. 336, 1676-1681 (2012).
  23. Miller, M. J., Wei, S. H., Parker, I., Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science. 296 (6089), 1869-1873 (2002).
  24. Dzhagalov, I. L., Melichar, H. J., Ross, J. O., Herzmark, P., Robey, E. A. Two-photon imaging of the immune system. Curr Protoc Cytom. Chapter 12 (Unit12 26), (2012).
  25. Matheu, M. P., et al. Toll-like receptor 4-activated B cells out-compete Toll-like receptor 9-activated B cells to establish peripheral immunological tolerance. Proc Natl Acad Sci U S A. 109 (20), E1258-E1266 (2012).
  26. Matheu, M. P., et al. Three phases of CD8 T cell response in the lung following H1N1 influenza infection and sphingosine 1 phosphate agonist therapy. PLoS One. 8 (3), e58033 (2013).

Play Video

Cite This Article
Weinger, J. G., Greenberg, M. L., Matheu, M. P., Parker, I., Walsh, C. M., Lane, T. E., Cahalan, M. D. Two-photon Imaging of Cellular Dynamics in the Mouse Spinal Cord. J. Vis. Exp. (96), e52580, doi:10.3791/52580 (2015).

View Video