Summary

金属硅酸盐分区在高压和高温:实验方法和协议,以抑制高亲铁元素元素夹杂物

Published: June 13, 2015
doi:

Summary

We present a procedure to determine the metal-silicate partitioning of siderophile elements, emphasizing techniques that suppress the formation of metal inclusions in experiments for the noble metals. The results of these experiments are used to demonstrate the effect of core-formation on the highly siderophile element composition of the mantle.

Abstract

Estimates of the primitive upper mantle (PUM) composition reveal a depletion in many of the siderophile (iron-loving) elements, thought to result from their extraction to the core during terrestrial accretion. Experiments to investigate the partitioning of these elements between metal and silicate melts suggest that the PUM composition is best matched if metal-silicate equilibrium occurred at high pressures and temperatures, in a deep magma ocean environment. The behavior of the most highly siderophile elements (HSEs) during this process however, has remained enigmatic. Silicate run-products from HSE solubility experiments are commonly contaminated by dispersed metal inclusions that hinder the measurement of element concentrations in the melt. The resulting uncertainty over the true solubility and metal-silicate partitioning of these elements has made it difficult to predict their expected depletion in PUM. Recently, several studies have employed changes to the experimental design used for high pressure and temperature solubility experiments in order to suppress the formation of metal inclusions. The addition of Au (Re, Os, Ir, Ru experiments) or elemental Si (Pt experiments) to the sample acts to alter either the geometry or rate of sample reduction respectively, in order to avoid transient metal oversaturation of the silicate melt. This contribution outlines procedures for using the piston-cylinder and multi-anvil apparatus to conduct solubility and metal-silicate partitioning experiments respectively. A protocol is also described for the synthesis of uncontaminated run-products from HSE solubility experiments in which the oxygen fugacity is similar to that during terrestrial core-formation. Time-resolved LA-ICP-MS spectra are presented as evidence for the absence of metal-inclusions in run-products from earlier studies, and also confirm that the technique may be extended to investigate Ru. Examples are also given of how these data may be applied.

Introduction

地面积被认为已经发生一系列星子之间的碰撞与球粒陨石主体组成,终止于一个巨大的冲击相认为负责对月球的形成1,2。在原土通过影响和短命的同位素衰变热足以引起广泛熔融和岩浆海洋或通过密集的富铁金属熔体可能下降池塘的形成。一旦到达岩浆海洋的基础上,金属熔体遇到流变边界,失速,并进行最后的金属-硅酸盐平衡之前通过固体地幔最终降到生长芯2。金属和硅酸盐阶段为金属熔体之间的进一步化学通讯穿过地幔的固体部分被认为是排除由于大尺寸的金属底辟3快速下降。地球的该初级分化成金属芯和硅酸盐MANT6 –乐是由两个地球物理和地球化学观测4今天透露。解释这些观测以一个岩浆海基,得到合理的条件为金属硅酸盐平衡,但是,需要的实验结果的一个适当的数据库。

原始上地幔(PUM)是一个假设的水库,包括核心的形成硅酸盐残留物,因此,其组成反映微量元素中的金属硅酸盐平衡的行为。微量元素在其地球化学亲和力的基础上芯偏析分布式金属和硅酸盐熔体之间。一个元件偏爱的金属相的大小可通过金属 – 硅酸盐的分配系数进行说明式(1)

公式(2) (1)

哪里公式3公式4表示元素的浓度i的金属和硅酸盐熔体分别。值公式5 > 1表明亲铁元素(铁爱好)的行为和那些<1亲石(岩爱好)的行为。该亲铁元素的PUM组成秀估计相对枯竭,以7球粒陨石,通常被认为是代表地球的整体组合物6,8。这枯竭的原因是亲铁元素的由核心封存,并为难治性元素的幅度应该直接反映的价值观公式5 。因此,实验室的实验试图确定的值公式5过岭NGE的压力(P),温度(T)和氧逸度六O 2)是相关的,从一个岩浆海洋底层金属偏析的条件。这些实验的结果随后可用于描绘的p区- 笔- ˚FO 2的空间是与多个亲铁元素的PUM丰兼容( 例如 ,9 – 11)。

高压力和相关的一个岩浆海洋场景温度可以重新创建在使用一个活塞 – 气缸或多砧按实验室。活塞 – 缸体装置提供访问到中等压力(〜为2GPa)和高温(〜2573 K)的条件下,但使大体积样品和各种胶囊材料可以很容易地使用。快速冷却速率也允许的范围内的硅酸盐熔体组合物的骤冷至其玻璃,从而简化了运行的产品的质地解释。多砧装置通常采用小体积的样品,但用合适的组件设计可以实现压力高达〜27帕和温度〜3000 K的使用这些方法允许对数据分区为多个的适度并稍微亲铁元素为聚集在大范围的 – T 条件。根据这些数据的PUM组合物的预测表明金属 – 硅酸盐平衡分别发生在平均压力和温度条件下在过量的〜29帕和3000 K,但确切的值是模型依赖性。为了解释某些氧化还原敏感元件的PUM丰度( 例如,钒,铬)的F O 2也被认为从下通过共现有铁和方铁矿强加〜4到2个对数单位积期间演进(FeO的)在相当于PT条件(铁方铁矿缓冲区)12。

虽然m的PUM丰任何亲铁元素可以在一个深岩浆海洋基座上占由金属硅酸盐平衡,它已被证明很难评估,如果这种情况也适用于最高度亲铁元素(HSE元件)。的HSE元件的铁金属通过低压力(P〜0.1兆帕)和温度(T <1673 K)的实验表明极端亲和力表明所述硅酸盐地球应强烈缺乏这些元素。的HSE含量为PUM的估计,然而,仅指示一个中等耗尽相对于球粒( 图1)。一个常用假定解决了明显的超额HSE是,地球经历了后期增生核心,形成13球粒陨石后续材料。这晚吸积物质会夹杂着PUM和提升HSE浓度,但对更丰富的元素的影响可以忽略。可替代地,已经提出,HSE元件的极亲铁性质箭头低磷 </em> – T 实验并没有坚持到在核心14,15形成目前高PT条件。为了验证这些假设,实验必须进行,以确定在适当的条件下HSE元件的溶解度和金属硅酸盐的分区。淬火运行产品的然而,许多以往的研究硅酸盐部分的污染,具有复杂的运行产品分析和遮蔽了真正的分配系数的金属和硅酸盐熔体之间的HSE元件。

在分区实验中的HSE元件存在于适当的自然浓度水平,这些元素对于铁金属的极端偏好阻止他们的测量硅酸盐熔体。为了解决这个问题,溶解度的测量是在该硅酸盐熔体饱和的兴趣和价值的HSE 公式5使用鲍里索夫的计算形式主义[16]。淬火硅酸盐运行的产品在还原条件下进行的HSE溶解度实验,然而,往往是由分散的HSE±铁的证据显示污染内含物17。尽管存在这些夹杂物在低˚F澳近无处不2实验含铂,铱,锇,铼和钌,( 例如 ,18 – 27),有在其质地介绍研究之间显着变化;比较例如引用2226。虽然已经证明,包含物可以形成,它们在实验28的运行条件稳定期,这并不排除夹杂物的生成,因为样品是骤冷。不确定周边夹杂物的起源使分析结果的处理困难,并导致歧义以上HSE元件的真实的溶解度降低硅酸盐融化。纳入无运行产品须评估该研究采用了能够产生准确的溶解浓度HSE的分析方法。在抑制在还原条件下金属夹杂物的形成相当大的进展已经被证明在使用活塞-气缸装置,其中,所述样本设计是从以 ​​前的研究条中,在任一的Au或Si的起始原料29实验– 31。加入Au或单体Si的起始原料分别改变实验样品的几何形状 f O 2的演化。这些方法的目的是通过改变HSE的扩散与还原样品的定时来抑制金属夹杂物形成,并在Bennett 31进行了讨论。不像以前的一些尝试清理夹杂物,如机械辅助平衡和离心活塞缸的硅酸盐熔体,本协议可以无需专门appar实施的ATU并适合于高PT实验。

详细描述这里是一个活塞-缸基础的方法来确定在高温(> 1873 K)为2GPa和一个 f O 2的类似的重新,锇,铱,钌,Pt和Au中的硅酸盐熔体中的溶解度铁方铁矿缓冲器。一个类似的实验设计中的应用也可能证明是成功的HSE实验在其它压力,提供所需要的相位关系,润湿性和动力学关系坚持到选定条件。然而,现有的数据,还不足以预测我们的样本设计是否会成功,在对应于深部岩浆海洋的压力。还概述是用来确定中度和轻微亲铁元素元(MSE和SSE分别)使用多砧装置划分的一般方法。扩展纳入无数据集HSE元件到高压很可能采用类似的多砧方法。火车醚,这些程序提供来约束核心偏析的条件都与地面积的阶段的装置。

Protocol

1)制备原料的合成玄武岩注意:玄武组合物用作原料更解聚的组合物的硅酸盐,虽然越来越多的相关一个岩浆海洋的情况下,是很难或不可能以猝灭到玻璃在活塞缸和多砧实验。 称量组分氧化物或碳酸盐(Ca和Na)的粉末的所需量,除铁,并加入到玛瑙研钵(参见实施例中的表1)。一个铁的混合物无重〜4克应广泛的实验套件提供足够的原料。 加乙醇至玛瑙?…

Representative Results

下面的实施例和讨论集中在实验确定的HSE溶解度硅酸盐熔点低˚FO 2。有关如何从多砧实验MSE和SSE分区的数据可以被用来限制在 P全面例子- 笔- ˚F澳芯金属偏析2的条件下,读者可参考的引用10 – 11 图7B-D显示背从典型的实验运行的产品散射电子图像。在包含Au的实验中,硅酸盐熔体之间的润湿性,金熔体和固体的HSE(再,锇,铱,钌)决定了?…

Discussion

利用这里所概述的协议执行包含无实验的结果先前已经比较了在引用29(锇,铱,金),30(重,金)和31(Pt)的文献数据。铂是最有启发性的展示出包容,自由运行,产品的实用性。在低˚FO 2的运行实验,厄特尔等人 48分配夹杂到稳定原点,因此限制数据还原到的时间分辨的LA-ICPMS谱最低计数每秒的区域。这种方法可以减少夹杂物测得的硅?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由自然科学和加拿大的设备,发现和Discovery Accelerator资助工程研究理事会授予JMBNRB支持确认来自卡内基研究所的华盛顿博士后奖学金计划的支持。斯蒂芬Elardo还之前与活塞缸机在地球物理实验室拍摄感谢他的帮助。

Materials

G10 Epoxy/Fiberglass Sheet Accurate plastics, Inc. GEES.020N.3648
Powdered starting materials- -Oxides, metals, carbonates Alfa Aesar Specific to desired experiment
Castable 2-part MgO ceramic Aremco Ceramcast – 584
PTFE Dry Lubricant Camie-Campbell 2000 TFE-Coat
Graphite resistance heaters Carbone of America (Now owned by Mersen USA) Custom Order
Barium Carbonate Chemical Products Corporation Custom Order Calcined free-flowing (CFF) grade
C-Type Thermocouple Wire (W26%Re, W5%Re) Concept Alloys N/A ~0.25 mm diameter is suitable for most experiments
Zirconia Cement Cotronics; Resbond 940 2-part cement N/A Use 100 parts powder for every 25 to 28 parts activator
Polyvinyl Acetate (PVA) Glue e.g Bostik N/A Often sold as 'white glue'
Cyanoacrylate Glue e.g Krazy Glue/Loctite N/A
Piston cylinder pressure vessel and WC piston Hi-Quality Carbide Tooling Inc. Custom Order
Silica Glass Tubing Quartz Plus Custom Order
Crushable ZrO2 tubes Saint-Gobain Custom Order
Crushable MgO rods and tubes Saint-Gobain Custom Order
WC cubes for multi-anvil experiments Tungaloy Custom Order Cubes are grade-F WC alloy
Single hole alumina tube for multi-anvil thermocouple Vesuvius McDanel AXS071730-04-06
4-hole alumina tube for piston cylinder thermocouple Vesuvius McDanel AXF1159–07-12 
4-hole alumina tube for multi-anvil thermocouple Vesuvius McDanel AXF1159-04-06

References

  1. Canup, R. M. Dynamics of Lunar Formation. Annual Review of Astronomy and Astrophysics. 42, 441-475 (2004).
  2. Rubie, D., Nimmo, F., Melosh, H. Formation of Earth’s core. Treatise on geophysics. 9, 51-90 (2007).
  3. Karato, S., Murthy, V. R. Core formation and chemical equilibrium in the Earth Physical considerations. Physics of the Earth and Planetary Interiors. 100, 61-79 (1997).
  4. Dziewonski, A. M., Anderson, D. L. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors. 25 (4), 297-356 (1981).
  5. McDonough, W., Sun, S. The composition of the Earth. Chemical geology. 120 (3-4), 223-253 (1995).
  6. Palme, H., O’Neill, H. Cosmochemical estimates of mantle composition. Treatise on geochemistry. 2, 1-38 (2003).
  7. Fischer-Gödde, M., Becker, H., Wombacher, F. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chemical Geology. 280 (3-4), 365-383 (2011).
  8. Ringwood, A. E. Chemical evolution of the terrestrial planets. Geochimica et Cosmochimica Acta. 30, 41-104 (1966).
  9. Wood, B. J., Wade, J. Core formation and the oxidation state of the Earth. Earth and Planetary Science Letters. 236 (1-2), 78-95 (2005).
  10. Siebert, J., Corgne, A., Ryerson, F. Systematics of metal–silicate partitioning for many siderophile elements applied to Earth’s core formation. Geochimica et Cosmochimica Acta. 75 (6), 1451-1489 (2011).
  11. Righter, K. Prediction of metal–silicate partition coefficients for siderophile elements: an update and assessment of PT conditions for metal–silicate equilibrium during accretion of. Earth and Planetary Science Letters. 304 (1-2), 158-167 (2011).
  12. Wood, B. J., Walter, M. J., Wade, J. Accretion of the Earth and segregation of its core. Nature. 441 (7095), 825-833 (2006).
  13. Kimura, K. A. N., Lewis, R. O. Y. S., Anders, E. Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochimica et Cosmochimica Acta. 38, 683-701 (1974).
  14. Murthy, V. R. Early differentiation of the Earth and the problem of mantle siderophile elements: a new approach. Science. 253 (5017), 303-306 (1991).
  15. Righter, K., Humayun, M., Danielson, L. Partitioning of palladium at high pressures and temperatures during core formation. Nature Geoscience. 1 (5), 321-323 (2008).
  16. Borisov, A., Palme, H., Spettel, B. Solubility of palladium in silicate melts Implications for core formation in the Earth. Geochimica et Cosmochimica Acta. 58 (2), 705-716 (1994).
  17. Ertel, W., Dingwell, D. B., Sylvester, P. J. Siderophile elements in silicate melts — A review of the mechanically assisted equilibration technique and the nanonugget issue. Chemical Geology. 248 (3-4), 119-139 (2008).
  18. Borisov, A. L., Palme, H. The solubility of iridium in silicate melts: New data from experiments with lr10Pt90 alloys. Geochimica et Cosmochimica Acta. 59 (3), 481-485 (1995).
  19. Borisov, A., Palme, H. Experimental determination of Os metal/silicate partitioning. Neues Jahrbuch für Mineralogie – Abhandlungen. 172 (2-3), 347-356 (1998).
  20. Borisov, A., Palme, H. Experimental determination of the solubility of platinum in silicate melts. Geochimica et Cosmochimica Acta. 61 (20), 4349-4357 (1997).
  21. Ertel, W., O’Neill, H. S. C., Sylvester, P. J., Dingwell, D. B. Solubilities of Pt and Rh in a haplobasaltic silicate melt at 1300. C. Geochimica et Cosmochimica Acta. 63 (16), 2439-2449 (1999).
  22. Cottrell, E., Walker, D. Constraints on core formation from Pt partitioning in mafic silicate liquids at high temperatures. Geochimica et Cosmochimica Acta. 70 (6), 1565-1580 (2006).
  23. Yokoyama, T., Walker, D., Walker, R. J. Low osmium solubility in silicate at high pressures and temperatures. Earth and Planetary Science Letters. 279 (3-4), 165-173 (2009).
  24. Laurenz, V., Fonseca, O. C., Ballhaus, C., Peter, K., Heuser, A., Sylvester, P. J. The solubility of palladium and ruthenium in picritic melts: 2. The effect of sulfur. Geochimica et Cosmochimica Acta. 102, 172-183 (2013).
  25. Neill, H. S. C. Experimental petrochemisty of some highly siderophile elements at high temperatures, and some implications for core formation and the mantle’s early history. Chemical Geology. 120 (3-4), 255-273 (1995).
  26. Fortenfant, S. S., Dingwell, D. B., Ertel-Ingrisch, W., Capmas, F., Birck, J. L., Dalpé, C. Oxygen fugacity dependence of Os solubility in haplobasaltic melt. Geochimica et Cosmochimica Acta. 70 (3), 742-756 (2006).
  27. Ertel, W., O’Neill, H. S. C., Sylvester, P. J., Dingwell, D. B., Spettel, B. The solubility of rhenium in silicate melts: Implications for the geochemical properties of rhenium at high temperatures. Geochimica et Cosmochimica Acta. 65 (13), 2161-2170 (2001).
  28. Medard, E., Schmidt, M. W., Wahle, M., Keller, N. S., Gunther, D. Pt in Silicate Melts: Centrifuging Nanonuggets to Decipher Core Formation Processes. Lunar and Planetary Science Conference. , 3-4 (2010).
  29. Brenan, J., McDonough, W. Core formation and metal–silicate fractionation of osmium and iridium from gold. Nature Geoscience. 2 (11), 798-801 (2009).
  30. Bennett, N. R., Brenan, J. M. Controls on the solubility of rhenium in silicate melt: Implications for the osmium isotopic composition of Earth’s mantle. Earth and Planetary Science Letters. 361, 320-332 (2013).
  31. Bennett, N., Brenan, J., Koga, K. The solubility of platinum in silicate melt under reducing conditions: Results from experiments without metal inclusions. Geochimica et Cosmochimica Acta. 133, 422-442 (2014).
  32. Okamoto, H., Massalski, T. B. The Au-Pt ( Gold-Platinum ) System. Bulletin of Alloy Phase Diagrams. 6 (1), 46-55 (1985).
  33. Neill, H., Pownceby, M. Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia. Contributions to Mineralogy and Petrology. 114 (3), 296-314 (1993).
  34. Deines, P., Nafziger, R., Ulmer, G., Woermann, E. . Temperature-oxygen fugacity tables for selected gas mixtures in the system CHO at one atmosphere total pressure. Bulletin of the Earth and Mineral Sciences Experiment Station. (88), (1974).
  35. Corgne, A., Keshav, S., Wood, B. J., McDonough, W. F., Fei, Y. Metal–silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion. Geochimica et Cosmochimica Acta. 72 (2), 574-589 (2008).
  36. Agee, C. B., Walker, D. Static compression and olivine flotation in ultrabasic silicate liquid. Journal of Geophysical Research. 93 (7), 3437-3449 (1988).
  37. Walker, D. Lubrication, gasketing, and precision in multianvil experiments. American Mineralogist. 76 (7-8), 1092-1100 (1991).
  38. Boyd, F., England, J. Apparatus for Phase-Equilibrium Measurements at Pressures up to 50 Kilobars and Temperatures up to 1750. C. Journal of Geophysical Research. 65 (2), 741-748 (1960).
  39. McDade, P., Wood, B. J., et al. Pressure corrections for a selection of piston-cylinder cell assemblies. Mineralogical Magazine. 66 (6), 1021-1028 (2002).
  40. Walker, D., Carpenter, M., Hitch, C. Some simplifications to multianvil devices for high pressure experiments. American Mineralogist. 75 (9-10), 1020-1028 (1990).
  41. Bertka, C. M., Fei, Y. Mineralogy of the Martian interior up to core-mantle boundary pressures. Journal of Geophysical Research. 102 (B3), 5251 (1997).
  42. Reed, S. J. B. . Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. , (2005).
  43. Sylvester, P. J. . Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. , (2008).
  44. Borisov, A., Walker, R. Os solubility in silicate melts: New efforts and results). American Mineralogist. 85 (7-8), 912-917 (2000).
  45. Borisov, A., Nachtweyh, K. Ru Solubility in Silicate Melts: Experimental Results in Oxidizing Region. Lunar and Planetary Science Conference. 77058, 1320 (1998).
  46. Borisov, A., Palme, H. Experimental determination of the solubility of Au in silicate melts. Mineralogy and Petrology. 56 (3-4), 297-312 (1996).
  47. Dunn, T. The Piston-Cylinder Apparatus. Short Course Handbook on Experiments at High Pressure and Applications to the Earth’s Mantle. , 39-94 (1993).
  48. Ertel, W., Walter, M., Drake, M., Sylvester, P. Experimental study of platinum solubility in silicate melt to 14GPa and 2273K: implications for accretion and core formation in Earth. Geochimica et Cosmochimica Acta. 70 (10), 2591-2602 (2006).
  49. Mann, U., Frost, D., Rubie, D. Partitioning of Ru. Rh, Pf, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures-Implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochimica et Cosmochimica Acta. 84, 593-613 (2012).
  50. Laurenz, V., Fonseca, R. O. C., Ballhaus, C., Sylvester, P. J. Solubility of palladium in picritic melts 1 . The effect of iron. Geochimica et Cosmochimica Acta. 74 (10), 2989-2998 (2010).
  51. Liu, Y., Ge, Y., Yu, D. Thermodynamic descriptions for Au–Fe and Na–Zn binary systems. Journal of Alloys and Compounds. 476 (1-2), 79-83 (2009).
  52. Rindone, G. E., Rhoads, J. L. The Colors of Platinum, Palladium, and Rhodium in Simple Glasses. Journal of the American Ceramic Society. 39 (5), 173-180 (1956).
  53. Akai, T., Nishii, J., Yamashita, M., Yamanaka, H. Chemical behavior of platinum-group metals in oxide glasses. Journal of Non-Crystalline Solids. 222 (Special Issue), 304-309 (1997).
check_url/52725?article_type=t

Play Video

Cite This Article
Bennett, N. R., Brenan, J. M., Fei, Y. Metal-silicate Partitioning at High Pressure and Temperature: Experimental Methods and a Protocol to Suppress Highly Siderophile Element Inclusions. J. Vis. Exp. (100), e52725, doi:10.3791/52725 (2015).

View Video