Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

ヒトノロウイルス突出ドメインの生産で Published: April 19, 2016 doi: 10.3791/53845

Summary

ここでは、Eに(P)ドメインを突出高品質のノロウイルスを発現し、精製するための方法を記載しますX線結晶学研究における使用のための大腸菌 。この方法は、他のカリシウイルスPドメイン、ならびに非構造タンパク質に適用することができる、すなわち 、ウイルスタンパク質ゲノム結合(のVPg)、プロテアーゼ、及びRNA依存性RNAポリメラーゼ(RdRp)。

Abstract

ノロウイルスキャプシドは、単一の主要構造タンパク質で構成され、VP1と呼ばれます。 VP1は、シェル(S)ドメインと突起(P)ドメインに細分されます。 Sドメインは、PドメインのフォームSドメイン上のウイルスのスパイクのに対し、ウイルスRNAの周りに連続した足場を形成し、抗原性および宿主細胞の相互作用のための決定が含まれています。 Pドメインは、炭水化物構造、 すなわち特異結合する。ノロウイルス感染症のために重要であると考えられている、ヒスト血液型抗原、。このプロトコルでは、我々は、高収率で高品質のノロウイルスPドメインの製造方法を説明します。これらのタンパク質は、次いで抗原と宿主細胞の相互作用を研究するために、X線結晶構造解析およびELISAのために使用することができます。

Pドメインは、まず、発現ベクターにクローニングした後、細菌中で発現されます。タンパク質は、金属イオンアフィニティークロマトグラフィーおよびサイズ​​排除クロマトグラフィーを固定化することを含む3つのステップを使用して精製されます。に原理は、特急、クローン精製し、そしてこのプロトコル新興ノロウイルス株を分析するための迅速なシステムになり4週間未満、中のタンパク質を結晶化することが可能です。

Introduction

人間のノロウイルスは、急性胃腸炎、世界中の1の主な原因です。これらのウイルスはノロウイルスサポウイルス 、Lagovirus、 ベシウイルス 、およびNebovirusを含む少なくとも5属が存在するうち、 カリシウイルス科ファミリーに属します。医療システムと広く分布に対するそれらの高い衝撃にもかかわらず、人間のノロウイルスの研究は、強固な細胞培養系の欠如によって妨げられています。現在までに、利用可能な認可されたワクチンまたは抗ウイルス戦略はありません。

ノロウイルスの主要キャプシドタンパク質、VP1と呼ばれるシェル(S)ドメインと突起(P)領域2に分割することができます。 Pドメインは、柔軟なヒンジ(H)領域によってSドメインに接続されています。 Pドメインは、ウイルスキャプシドの最も外側の部分を形成するのに対し、Sドメインは、ウイルスRNAの周りに足場を形成します。細菌で発現された場合、Pドメインは、生物学的に関連する二量体に組み立てます。 P DIMERは、糖鎖構造と相互作用し、唾液中の可溶性抗原として存在し、特定の宿主細胞3に見られるヒスト血液型抗原(HBGAs)と呼ばれます。 PドメインHBGA相互作用は、感染4のために重要であると考えられています。確かに、最近の報告では、in vitro 5 でのヒトノロウイルス感染症のための合成HBGAsまたはHBGA-発現する細菌の重要性を明らかにしました。

ノロウイルスの宿主細胞付着に関する現在の研究は、主に、昆虫細胞または大腸菌 (E. coli)中で発現される組換えPドメインと表現することができるウイルス様粒子(VLP)を用いて行われます。原子分解能でPドメインHBGA相互作用を理解するために、PドメインHBGA複雑な構造は、X線結晶学を用いて解くことができます。ここでは、高い量と質のPドメインの生産はX線クリに使用されることを可能にするPドメインの発現および精製のためのプロトコルを記述しography。また、この方法は、他のカリシウイルスのPドメインおよび非構造タンパク質に適用することができます。

Pドメインは、 大腸菌のためにコドン最適化され大腸菌発現標準トランスファーベクターにクローニングしました。 Pドメインは、その後プロテアーゼ切断部位が続くポリヒスチジン(His)をタグ及びマンノース結合タンパク質(MBP)をコードする発現ベクターに再クローニングします。 MBP-Hisを、Pドメインの融合タンパク質は、 大腸菌で発現されます大腸菌は 、3精製工程が続きます。 MBP-Hisを-Pドメイン融合タンパク質は、固定化金属イオンアフィニティークロマトグラフィー(IMAC)を用いて精製されます。次に、融合タンパク質は、ヒトライノウイルス(HRV)-3℃プロテアーゼ及びPドメインが追加のIMAC精製工程によってMBP-彼から分離されて切断されます。最後に、Pドメインは、サイズ排除クロマトグラフィー(SEC)を用いて精製されます。精製されたP領域は、次に、X線結晶学のために使用することができます。タンパク質結晶化条件のスクリーニングはperfoです異なるPドメインタンパク質の濃度を用いて、市販のスクリーニングキットにrmed。結晶成長が観察され、最も有望な条件が最適化されています。

ここに記載された方法で、それ未満で4週間以内に構築するタンパク質を遺伝子から移動することが可能です。したがって、Pドメインの発現、精製、および結晶化の手法は、分子レベルでノロウイルス - 宿主相互作用を研究し、最新のワクチン設計および薬物スクリーニングを支援するために重要なデータを提供するのに適しています。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. Pドメインのクローニング

  1. ノロウイルス株の配列アラインメントによってPドメインコード領域を決定する(例えば、GII.10株、GenBankの:AF504671、PDB-ID:3ONU)6。また、Pドメイン( 図2A)のC末端にフレキシブル領域を削除します。 E.のためのDNAを、コドン最適化大腸菌発現とサブクローンPドメインはpMalc2xについての発現ベクター6,7にコード領域への順序でのBamHI(N末端 ​​)およびNotI(C末端)制限部位を含みます。
    注:Pドメインコード領域を最適化し、商業サービスによって合成されます。地域(挿入)をコードPドメインは、長さが約1キロバイトと標準トランスファーベクターで配信します。
  2. メーカーに37℃で1時間のために各1μLのBamHI(2万U / ml)およびNotIで(10,000 U / ml)を制限酵素でトランスファーベクター2μgのダイジェストは、バッファを供給する。
  3. 1%アガロースゲル上で消化し、インサートを分離135 Vで20分間、および市販のキットを用いてゲルからの挿入DNAを精製します。
  4. 各1μlのをBamHI(2万U / ml)で、このベクター2μgのを消化することによってpMalc2xについて発現ベクターを準備およびNotI(10,000 U / ml)の制限は、37℃で1時間酵素。 (1.3)上記のようにアガロースゲルからベクターを精製します。注:両方のサンプル(1.2および1.4)は-20℃で保存することができます。
  5. 室温(RT)( 図2Bおよび2C)で15分間、1μlのT4-DNAリガーゼ(40万U / ml)でのBamHIおよびNotI制限部位で消化pMalc2xについてベクターに精製された挿入物を連結。インサート比1:3(分子量)pMalc2xについてベクトルとベクトルの少なくとも20 ngのを使用してください。連結混合物は、通常〜20μlです。
  6. 50μlの化学的コンピテントE.にライゲーションミックスの2μLを変換します(42°Cで氷上で10分間、熱ショック45秒)標準的な形質転換プロトコルを用いて大腸菌 DH5α細菌細胞および600で成長37℃で1時間μlのSOC培地。遠心分離機は、形質転換された細胞は、千×gで3分間、上清を廃棄し、SOC培地30μlにペレットを再懸濁します。
    1. 選択のために100μg/ mlのアンピシリンを含むLB寒天プレート上に形質転換混合物をプレーティングし、37℃で一晩成長します。少なくとも5つのコロニーを選択します。
  7. 5個のコロニーのそれぞれについて、50μg/ mlのアンピシリン(LB-アンペア)を補充したLB培地2〜3mlの文化を接種し、37℃で160 rpmで一晩振とうすることにより成長します。
  8. 市販のキットを用いて、一晩培養液からプラスミドを抽出します。 pMalc2xについてフォワードプライマー(5'-TCAGACTGTCGATGAAGC-3 ')と配列決定によるPドメインインサートの存在を確認し、逆方向プライマー(5'-GATGTGCTGCAAGGCGAT-3')。

2. Pドメイン式

  1. MBP-Hisを-PドメインのpMalc2xについてベクトル符号化の - (400 ngの/μlの150 ngの/μl)を1μLを変換しますコンピテントE.の50μlの中に融合タンパク質標準的な形質転換プロトコル(氷上で10分間、熱ショックを42℃で45秒)を用いて大腸菌 BL21細胞と37℃で1時間、600μlのSOC培地中で増殖します。 160 rpmで37℃で一晩LB-アンペアの120ミリリットル中にサブカルチャー。
  2. サブカルチャー(1:100)を含むLB-アンペアの9リットル( 例えば、1.5 L培地それぞれに6×5 Lフラスコ)を接種します。 0.6 - OD 600が 0.4に達するまで、160 rpmで、37℃で振とう細胞を増殖させます。その後、約1時間22℃に温度を下げ、その後、イソプロピルβ-D-チオガラクトピラノシドの0.66ミリモル(IPTG)8でタンパク質発現を誘導します。一晩22℃(〜18時間)で細胞を成長させます。
    温度を変化させることができるが、我々は22℃以下を使用することをお勧めします。注意して​​ください。
  3. 遠心分離によって細胞を採取(10543×gで、15分間、4℃)。上清を捨て、-20℃で細胞ペレットを凍結します。

回目の精製工程およびプロテアーゼ切断

  1. 実験の再現性と安定性を保証するためにストック溶液からのタンパク質の精製工程中に使用されるバッファを準備します。固定化金属イオンアフィニティークロマトグラフィー(IMAC)、各イミダゾールの異なる濃度で含む(10ミリメートル、20ミリメートル、50ミリメートル、250 mM)のための4つの異なる緩衝液を調製します。 SECのために、より高い塩濃度でゲルろ​​過バッファー(GFB)を調製するが、イミダゾールなし。すべてのバッファ孔径0.45μmの使用前に脱イオン水とフィルターを使用してください。
    注:詳細なバッファ準備制度については、 表1を参照してください。
  2. 9個のリットルの培養物からの細胞ペレットを解凍し、4℃で150 mlのPBSに溶解します。細胞を破壊し、細胞懸濁液を2分間​​、三回(電源130 W、振幅20%、パルス周波数、50%)を超音波処理。超音波処理中氷上の細胞懸濁液を保管してください。
  3. CentrifuGE発現タンパク質を含有する上清から細胞残屑を分離するために超音波処理した細胞懸濁液(43667×gで、30分間、4℃)。上清を収集し、ペレットを捨てます。
  4. 洗浄およびニッケル(Ni)のクロマトグラフィーカラム中の10mMイミダゾール緩衝液で-NTAアガロースビーズの10ミリリットル(= 1カラム容量[CV])スラリーを平衡化。発現されたMBP-Hisを-Pドメイン融合タンパク質を含む、ステップ3.3からの上清を平衡化したNiビーズを追加し、ゆっくり回転させながら4℃で30分間インキュベートします。
  5. インキュベーションの後、クロマトグラフィーカラムに全体のNi-ビーズ - タンパク質混合物を適用します。 10 mMの後、20 mMのと最後の50mM( 図3A)から開始し、10 mMの、20 mMの、および50mMのイミダゾール緩衝液の各5 CVのでゆっくりとカラムを洗浄。
  6. 250mMイミダゾール緩衝液( 図3A)を用いてMBP-Hisを-Pドメイン融合タンパク質を溶出させます。溶出の間、融合タンパク質の溶出(OD 28の上昇を確認するために、ODを280nmのを確認します0nm)。 ODを280nmのは 〜0.1に低下するまで、溶出を続けます。 10mMのイミダゾール緩衝液の少なくとも10のCVが続く250mMのイミダゾールバッファー(少なくとも10のCV)、過剰量でビーズを洗浄します。第二の精製工程(セクション4)のためのビーズを保存します。
  7. 12%SDSポリアクリルアミドゲル(10×8センチ)9( 図3A)を用いてSDS-PAGEでMBP-Hisを-Pドメイン融合タンパク質の存在を確認します。 45 Aでゲル電気泳動を行い、45分間200 V。
  8. 〜3ミリグラム/ mlの最終濃度に濃縮する( 例えば、商業的コンセントレータを使用して)溶出MBP-Hisを、Pドメインの融合タンパク質。 4°C( 図3A)で一晩:(100〜1)10mMのイミダゾール緩衝液の2リットルに対して透析中のHRV-3CプロテアーゼとMBP-彼-Pドメイン融合を切断。濃縮されたタンパク質の最終容量に応じて、透析カセットまたは透析チューブで透析を行います。
    注:タンパク質のためのHRV-3Cプロテアーゼの量を切断は、特定のプロテアーゼ活性に応じて(2 U /μl、1 Uは、タンパク質の100μgのを切断するのに十分である)を算出して発現レベルに変化し、SDS-PAGEの結果から推定することができる溶出融合タンパク質の量(3.7さ)。

前記第2の精製工程

  1. 10mMイミダゾール緩衝液中のステップ3.6からのNi-ビーズを平衡化します。
  2. ゆっくり回転させながら4℃で30分間平衡化したNi-ビーズ(4.1)と(切断されたP領域、MBPタンパク質、およびHRVプロテアーゼを含有する)ステップ3.7からの透析タンパク質をインキュベートします。
  3. 列にニッケルビーズ混合物を適用し、フロースルー(切断されたPドメイン)( 図3B)を収集。 ODを280nmのが 〜0.1に達するまで、それは列から離れるようにタンパク質の濃度を測定します。
    注:MBP-彼は、Ni-ビーズ( 図3B)に結合したままでなければなりません。
  4. 1でSDS-PAGEを使用して切断されたPドメインの存在を確認します( 図3B)上記のように、2%ゲル。 〜3 mg / mlでの溶出Pドメインを濃縮し、その後のSEC精製のためGFBに対して4℃で一晩透析します。

5. 3 番目の精製工程

  1. 洗浄ポンプとHPLC精製システムのパイプとプレ平衡化SEC-列をGFBと(材料リストを参照してください)​​。
  2. 濃縮試料の量に応じて、1ミリリットル(3ミリリットルまで)スーパーループ(最大12 ml)またはループを使用して/分の流速でカラムにPドメインを注入します。注入が完了した後、/分で2.5 mlに、流速を増加させます。
  3. ODが増加し、Pドメインは列から外れたように、1.5ミリリットルの画分を収集します。 12%ゲルを用いてSDS-PAGEを用いて分画を確認する( 図4Aおよび4B)。プールのみ最も純粋な画分〜3 mg / mlでと〜8 mg / mlとに集中します。
    注:〜110ミリリットル(空隙容量)した後、ほとんどの不純物が320ミリリットル総容積でSECカラムから溶出されます。ザPドメインは、通常、二量体として溶出します。 Pドメインの二量体の溶出時間/ボリュームは、SECカラムのプレップグレード(PG)に依存しています。

Pドメインの6結晶

  1. 初期結晶化スクリーニングのための〜3 mg / mlとし、8 mg / mlででPドメインを使用してください。 384市販のスクリーニング条件との最初の画面のために濃度あたりのPドメインの少なくとも100μLを準備します。リザーバは母溶液100μlを含有する96ウェルプレートフォーマットで、18℃でスクリーニングを行い、液滴は、0.2μlの母液及び0.2μlのタンパク質から構成されています。
  2. 繰り返し、成功した結晶化条件を最適化します。したがって、3行が含まれている15ウェルプレートを使用します。 100%の母液、90%の母液と10%の水、及び80%の母液と20%の水で3行目と2行目との最初の行を設定します。 2μlの(1μlのタンパク質+ 1μlの母液)と500の液滴サイズを使用します81;リザーバーボリュームとして母液のリットル。
  3. リガンドとPドメインを共結晶化のために最適化された結晶条件を使用してください。 6.2で説明したようにプレートを準備します。代わりに、2μlの液滴サイズの、1μlの母液、1μlのタンパク質、および1mg / mlの濃度のリガンドの1μLを含む液滴を設定します。
  4. 放射光を用いた単結晶のデータセットを収集します。最初の検索モデル6,10-13として高い配列類似性で公開Pドメイン構造を用いて分子置換を実行します。
    注:リガンドの存在は、電子密度の非モデル化されたブロブとして表示されます。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

記述されたプロトコルの概略図を図1に示されている。プロトコルは、標的遺伝子のクローニング、発現、三段階精製、および結晶化を含む6つの主要な部分をカバーする。 図2は、発現構築物(EC)の設計を示 ​​し、 pMalc2xについての発現ベクターの特性。 pMalc2xについてベクターの多重クローニング部位(MCS)の配列は、制限酵素およびプロテアーゼ切断部位を示す。 図3は、MBP-Hisを-Pドメイン融合タンパク質の代表的なSDS-PAGEの結果を示し、最初の二つの対応する回路図でPドメインを切断しました精製の手順を実行します。第三の精製工程は、図4に示され、精製スキーム、精製されたP領域の溶出クロマトグラムと集めた画分の代表的なSDS-PAGEの結果を伴います。最も純粋な画分をプールし、concentrat(SDS-PAGEによります)ED、およびX線結晶学に使用されます。

図1
図1.クローニングおよび発現を網羅ノロウイルスPドメインの発現および精製の ​​概略。ノロウイルスPドメインの発現および精製の ​​ためのプロトコルは、6つの主要部分が含まれている、(1および2)、精製(3〜5)、及び結晶化(6)。青色の長方形はMBP-彼を表すのに対し、赤の三角形は、Pドメイン(遺伝子やタンパク質)を表します。 IMAC(3,4)の間に使用されたNi-NTAアガロースビーズは、大きなシアン球を示されています。 SECビーズ灰色の球体として示されています。

図2
図2.設計および発現構築物のクローニング(EC)。PドメインEC発現ベクターのマップ、およびマルチクローニングサイト(MCS)が示されている。ノロウイルスカプシドタンパク質(VP1)のA)アラインメント及びPドメインECのC末端欠失(緑)とECの設計を示 ​​す。B E.でPドメインの発現のために使用pMalc2xについての発現ベクターの)概略図アンピシリン耐性カセット(AMPR)、LAC-オペロン(のlacI)、マンノース結合タンパク質(オス、MBP)およびMCS。C)pMalc2xについての発現ベクターのMCSの配列を持つ大腸菌 。強調表示された制限酵素切断部位(赤のボックス)およびHRV 3Cプロテアーゼ(精度、青色ボックス)のための認識配列LEVLFQGPです。

図3
1 回目 と2 回目 ピュール 図3.回路図と代表的な結果ificationステップ。精製概要代表SDS-PAGEの結果をNi-NTAアガロースビーズを用いて、MBP-Hisを-Pドメイン融合タンパク質(大シアン球)の。A)の精製を示します。 12%SDS-PAGEゲルは、MBP-Hisを-Pドメイン融合タンパク質を示している。切断されたPドメイン(赤い三角形)からMBP-Hisを(青の長方形)のB)分離。切断されたP領域の溶出は、12%のゲル上でSDS-PAGEによって分析します。

図4
3 回目の 精製工程 のために、図4の回路図と代表的な結果 。SECを使用してSDS-PAGEの結果に対応するPドメインの溶出クロマトグラム。ブラック番号が収集された画分を示している。SECカラム上での分離のA)回路図(SECビーズはグレーの球として描かれています)。 12%SDS-PAGEは、タンパク質の存在を示しますSEC溶出し、どのその後プールし、X線結晶構造解析のために使用されている間に収集された画分。B)にSECクロマトグラムは、溶出体積にわたって測定された吸光度(黒線)を示しています。 Pドメインは、SECカラムに注入したときに赤線が示している。C)ズームBの第二のピークに。 この図の拡大版をご覧になるにはこちらをクリックしてください。

バッファ名 1 MトリスpHは7.6 5 M NaClを 3.5 Mイミダゾール、pHが8
250mMのイミダゾールバッファー 20ミリリットル 40ミリリットル 71ミリリットル
50mMのイミダゾール緩衝液 20ミリリットル 40ミリリットル 14ミリリットル
20mMのイミダゾール緩衝液 20ミリリットル 40ミリリットル 5.7ミリリットル
10mMのイミダゾール緩衝液 20ミリリットル 40ミリリットル 2.8ミリリットル
GFB(ゲル濾過緩衝液) 25ミリリットル 60ミリリットル -

テーブルのヘッダに示されるように、表1の精製の ​​間に使用される一般的なバッファのためのピペッティングスキーム。トリス-HClのストック溶液は、塩化ナトリウム(NaCl)、及びイミダゾールを調製します。水中の所望の緩衝液1 Lを調製するために必要な原液の量が示されています。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

ここで、我々は高品質と量におけるノロウイルスPドメインの発現および精製のためのプロトコルについて説明します。ノロウイルスは十分に研究されておらず、構造データを連続的に必要とされています。我々の知る限りでは、他のプロトコル( 例えば 、GSTタグ付きPドメイン)を使用して、Pドメインの生産はこれまでのところ、問題となっており、ノロウイルス-ホスト相互作用に関する十分な構造のデータが行方不明になっています。ここで説明する方法では、我々は最近、結合ノロウイルス炭水化物の分子的詳細の理解に大きく貢献しています。本プロトコルは、種々のタンパク質に適合させることができます。しかし、このプロトコルの実装を成功させるには、精製方法の各部分内のいくつかの要因に依存します。

発現構築物の設計は重要な最初のステップです。我々は、 大腸菌における発現収率を改善するために、Pドメインの発現構築物のコドン最適化を行いますcoliおよび削除RELEコー​​ド領域内に存在するvant制限部位。さらに、我々は、結晶化の間の発現およびタンパク質の梱包時にタンパク質の折りたたみのために不利になる可能性がC末端でフレキシブル領域を削除します。 MBP融合タンパク質としての発現は、発現の間に、溶液中のタンパク質を維持するための平均値です。

可溶性タンパク質の発現に関しては考慮すべき追加のパラメータがあります。 E.大腸菌 BL21株は、高収量のタンパク質発現のために最適化され、したがって、このプロトコルで使用されています。発現は、22℃で一晩行い、IPTGの減少量は、誘導のために使用されます。これは、タンパク質発現の動力学のために有利であり、結果として、より少ないタンパク質が誤った折り畳みに起因する封入体に凝集します。したがって、IPTGでタンパク質発現を誘導する前に、22℃に培養液を冷却することが重要です。タンパク質の収率が十分でない場合、さらにtemperatを低減することができますUREとIPTGの量を調整します。

特定のケアは、精製カラムに関して注意する必要があります。原理的には、ニッケルビーズを数回再使用することができます。しかしながら、結合容量は、時間の経過とともに減少します。 Ni-ソリューションは、その標準の青色を失った場合、ビーズを剥離し、製造者のハンドブックの指示を使用して充電することができます。また、高い性能を可能にするために適切な条件でSECカラムを維持し、定期的に清掃することが重要です。 SECカラムの異なるプレップグレード(PG)で精製する必要があるタンパク質のサイズに応じて、選択すべきです。 Pドメインの二量体のサイズは〜65 kDaであり、より大きなタンパク質は、より良好な200 pgのカラムを用いて分離することができる一方でよく、75 PGカラムを使用して約100キロダルトンの不純物から分離することができます。

最適化された配列の設計、発現、および精製手順の組み合わせとしては、我々のメタを使用し、非常に純粋な、高品質のPドメインを獲得することが可能ですOD。精製されたP領域の高品質のために、さらなる研究は、抗体産生のための免疫化、NMR実験、およびELISAに基づく研究を含む、好適です。また、精製されたP領域は、Fab抗体及びナノボディ14,15との複合体形成のために使用することができます。我々の知る限り、これはハイスループットな方法でPドメインの結晶化を可能にし、このプロトコルを使用して第1のプロトコルであり、我々はHBGAs 6,16との複合体に20以上の様々なノロウイルスの複雑な構造とlagovirus Pドメインを決定しました。

我々の経験によると、プロトコルは、最大65キロダルトンのタンパク質に限定されることがあります。しかしながら、このようなウイルスタンパク質ゲノム結合(のVPg)、プロテアーゼ、及びRNA依存性RNAポリメラーゼ(RdRp)のような別のカリシウイルス17および非構造タンパク質のカプシドタンパク質は、正常(未発表)は、この方法を用いて発現させ、精製しました。この方法を適用する場合私は、他のウイルスのタンパク質をカプシドしますTは、タンパク質の十分な量を得るためにいくつかのパラメータ(例えば 、溶出緩衝液のイミダゾール濃度)を変化させると、最適化する必要があるかもしれません。また、GFB( 例えば 、PBSまたはTBS)以外の異なる記憶バッファは、最適なタンパク質安定性について試験することができます。

分析の構築物の大部分は、高解像度に回折立方/板状結晶で得られました。従って、本プロトコルはよく結晶化する純粋なタンパク質を得るためのツールを提供しています。限り利用可能になりまし強固な細胞培養モデルがあるので、この方法論は、ノロウイルス - 宿主細胞の相互作用の理解に貢献するための重要なステップを構成しています。

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
P domain DNA Life Technologies GeneArt Gene Synthesis
pMalc2x  vector On request
BamHI New England Biolabs R0136L
NotI New England Biolabs R0189L
T4 DNA Ligase New England Biolabs M0202S
QIAquick Gel Extraction Kit Qiagen 28704
QIAprep Spin Miniprep Kit Qiagen 27104
S.O.C. Medium Life Technologies 15544-034
Econo-Column Chromatography Column Bio-Rad 7372512 2.5 x 10 cm, possible to use other size
Ni-NTA Agarose Qiagen 30210
Vivaspin 20 GE Healthcare various cutoff of 10 kDa, 30 kDa and 50 kDa used
Subcloning Efficiency DH5α Competent Cells Life Technologies 18265-017
One Shot BL21(DE3) Chemically Competent E. coli Life Technologies C6000-03
HRV 3C Protease Merck Millipore 71493
HiLoad 26/600 Superdex 75 PG GE Healthcare 28-9893-34 SEC column
JCSG Core suites Qiagen various 4 screens with each 96 wells
Carbohydrates Dextra Laboratories, UK various Blood group products

DOWNLOAD MATERIALS LIST

References

  1. Ahmed, S. M., et al. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect. Dis. 14, 725-730 (2014).
  2. Prasad, B. V., Matson, D. O., Smith, A. W. Three-dimensional structure of calicivirus. J. Mol. Biol. 240, 256-264 (1994).
  3. Choi, J. M., Hutson, A. M., Estes, M. K., Prasad, B. V. Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proc. Natl. Acad. Sci. U.S.A. 105, 9175-9180 (2008).
  4. Marionneau, S., et al. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology. 122, 1967-1977 (2002).
  5. Jones, M. K., et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science. 346, 755-759 (2014).
  6. Hansman, G. S., et al. Crystal structures of GII.10 and GII.12 norovirus protruding domains in complex with histo-blood group antigens reveal details for a potential site of vulnerability. J. Virol. 85, 6687-6701 (2011).
  7. Fath, S., et al. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One. 6 (e17596), (2011).
  8. Jacob, F., Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318-356 (1961).
  9. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685 (1970).
  10. Kabsch, W. Automatic Processing of Rotation Diffraction Data from Crystals of Initially Unknown Symmetry and Cell Constants. J. Appl. Crystallogr. 26, 795-800 (1993).
  11. Mccoy, A. J., et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674 (2007).
  12. Emsley, P., Lohkamp, B., Scott, W. G., Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D-Biol. Crystallogr. 66, 486-501 (2010).
  13. Adams, P. D., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D-Biol. Crystallogr. 66, 213-221 (2010).
  14. Koromyslova, A. D., Hansman, G. S. Nanobody binding to a conserved epitope promotes norovirus particle disassembly. J. Virol. 89, 2718-2730 (2015).
  15. Hansman, G. S., et al. Structural basis for broad detection of genogroup II noroviruses by a monoclonal antibody that binds to a site occluded in the viral particle. J. Virol. 86, 3635-3646 (2012).
  16. Singh, B. K., Leuthold, M. M., Hansman, G. S. Human noroviruses' fondness for histo-blood group antigens. J. Virol. 89, 2024-2040 (2015).
  17. Leuthold, M. M., Dalton, K. P., Hansman, G. S. Structural analysis of a rabbit hemorrhagic disease virus binding to histo-blood group antigens. J. Virol. 89, 2378-2387 (2015).

Tags

分子生物学号110、クローニング、ノロウイルス、Pドメイン、タンパク質発現、タンパク質精製、結晶化
ヒトノロウイルス突出ドメインの生産で<em&gt; E。大腸菌</em&gt; X線結晶用
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Leuthold, M. M., Koromyslova, A. D., More

Leuthold, M. M., Koromyslova, A. D., Singh, B. K., Hansman, G. S. Production of Human Norovirus Protruding Domains in E. coli for X-ray Crystallography. J. Vis. Exp. (110), e53845, doi:10.3791/53845 (2016).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter